Edited by Foxit PDF Editor
Copyright (c) by Foxit Software Company, 2004 - 2007
For Evaluation Only.

Table of Contents

L TREIBNQUAOE ... ceetiieeeit ettt ettt ettt e e e e e e enaas 2
(IS (o= I 0 (o (0 (< 2
(10 1< 1L L= £ 2
=YV o (0 L 2

L0 (0] £ 2
(@1 0TS (0] 0P 2

(I < =) F- T 2
(0001010 [0101= 115 P 3
ValueS aNd DalatyPESvvneiieiiee e e e e e e 3
10100 PP RPRP 4

[0 7= | 4

S {10 To [P ST SPPTTR 4

| 4

50 | 5

= o) 5
ALY e 5
o1 1 o | 5
(== PP 5

(O] 15 = (o 5

(€1 1S = (o] S 6
LS 0 = 7= N 6

B 0== o [N 6
WEBK REFEIEINCES ...ivniiiii i e e e ens 6

[(= e 0110 g W 0o T4 1= AT 6
NV ATADIES .o 6

S = (= 1< 11 £ 8
5 oo N 8
CoNtrol FIOW SEAEEMENESvuieiiiieee e et e e e e e e e e ee e enas 8
0] 9

o] ("= PP 10

(000111 10 (P 10

(= 00 10

VI e e 11
Local variableS deClarationovuieiiiiiie e 11
FUNCLION AECIArEtioNiviieieee et e e e e e 11

(Ol Yo (S == (o) o NP 11
EIYICEICH . 11
L1007 12

[0 PP 12
<10 12
EXPrESSION SEALEMENT ...e.vuieieiee e e e e e e e e e e e e e e e e et e e e e e e e anas 12
EXPIESSIONS ...ttt ettt e e e e a e aee 12
ASSIGNMENt(=) & NEW SIOL(S-) wnnieeiieii e e 12

10 01< = (0] £ T PP 13

L= o (=X oo 1S U (o] 15

(01T =1 = 16

(ox o T TN 16
ATTAY CONSITUCTON ...t e e 17

Iz o [T 17
(0] 015 1 (0 (011 o) IR 17

S Lo R o (== 1) [17

IS o) 0 (1= 1T [18

Edited by Foxit PDF Editor
Copyright (c) by Foxit Software Company, 2004 - 2007
Squirrel 2.2 Ref-0r Evaluation Only.

N = P 18
o1 1 o T 18
FUNCEION AECIArELIONe.ieieiee e et e e aens 18

[B gl 10 g o= 1 K= 20
Binding an environment to afunCtioncccooiiiiiiiiiiii e 20
FreeVariablEs 21

L= LI = 1= o | 21

(O =1 21
(Ol Yo (S == (o) o NP 21

(O o 1 15 = (o= 24

18] =T =] o 25
MELAMELNOUS ... coeeie e e et e e es 27

(1< 01S =1 (0] £ 27
COoNStANtS & ENUMEIGLIONS ...eueiieiieeieeee e e e e e e e e e e e s e s e e e eanaenss 28
(00015 = 01 £ 28

[101 0.01< = (0 29
IMPIEMENTALION NOLES ...t e 29

B 01 ="=0 30
L0 LS T 0T 7= o 30
WEBK REFEIEINCES ...ioniieiii it e e e et e e e e e e ens 32
DEIEGALION ...t 33
Y= =10 01=:1 0016 [33
[< PP PPSPPP 34

= PPN 34
2.0 o 34

0 1 o 34

A e, 35

L= U o N 35

1.1 PPN 35
PP 35
021010 LU o 35

L [0 P 35

Y PEOT eeeeeeeeaaee 35
1 1o PP PP 35

Bl 36
CClONEA .o 36
1.1 36
(0151 o 36
CINNEITTEA L. 36
0G0 0101 o= PP 36
BUIE-IN TUNCLIONS ...eeiii et e et e e et e e e e e e eaeas 37
Global SYMBOIS 37
Default dEIEQAESvuiieieie e 38

Edited by Foxit PDF Editor
Copyright (c) by Foxit Software Company, 2004 - 2007
For Evaluation Only.

Chapter 1. The language

This part of the document describes the syntax and semantics of the language.

Lexical structure

Identifiers

Identifiers start with a alphabetic character or ' ' followed by any number of alphabetic characters, ' ' or
digits ([0-9]). Squirrel is a case sensitive language, this means that the lowercase and uppercase repres-
entation of the same aphabetic character are considered different characters. For instance "foo", "Foo"
and "fOo0" will be treated as 3 distinct identifiers.

id=[a-zA-Z]+ a-zA-Z 0-9]*

The following words are reserved words by the language and cannot be used as identifiers:

Keywords
br eak case
const def aul t
ext ends for
nul | resune
try t ypeof
var gc var gv

catch

del egat e
function
return
whil e

i nst anceof

cl ass
del ete
if
switch
par ent
true

Keywords are covered in detail later in this document.

Operators

Squirrel recognizes the following operators:

! = ||
+ += -

% % ++
| ~ >>

Other tokens

Other used tokens are:

{ } []

Literals

cl one

el se

in

this

yield

fal se
<= =>
/= *
= &

conti nue
enum

| ocal

t hrow

const ruct or
static

The language

Squirrel acceptsinteger numbers, floating point numbers and stings literals.

34 Integer number(base 10)
O0xFFO00A120 Integer number(base 16)
0753 Integer number(base 8)
'a' Integer number

1.52 Floating point number
1.e2 Floating point number
l.e-2 Floating point number
"I"'ma string" String

@|l'ma verbatimstring" String

@ |I'ma multiline verbatim string String

IntegerLiteral :=[0-9]+ | 'O0x'" [0-9A-Fa-f]+ | """ [.]+ """ | O[O-7]+
FloatLiteral :=[0-9]+ '.' [O 9]+

Fl oat Li t er al =[O-9]+' e |TE T+ - [0-9]+
StringLiteral:="""[.]*

Verbat|rrStr|ngL|teraI ='@"'"'[.]* """

Comments

A comment is text that the compiler ignores but that is useful for programmers. Comments are normally
used to embed annotations in the code. The compiler treats them as white space.

The / * (dash, asterisk) characters, followed by any sequence of characters (including new lines), fol-
lowed by the*/ characters. This syntax isthe sameas ANSI C.

/*

this is

a multiline coment.

this lines will be ignored by the conpiler
*/

The// (two dashes) characters, followed by any sequence of characters. A new line not immediately
preceded by a backslash terminates this form of comment. It is commonly called a “ si ngl e-1i ne
conmment . ”

//this is a single Iine coment. this line will be ignored by the conpiler

Values and Data types

Squirrel is adynamically typed language so variables do not have a type, although they refer to a value

The language

that does have atype. Squirrel basic types are integer, float, string, null, table, array, function, generator,
class, instance, bool, thread and userdata.

Integer

An Integer represents a 32 bits (or better) signed number.

local a = 123 //deci mal

|l ocal b = 0x0012 // hexadeci nal
local ¢ = 075 //octal

local d ='w //char code

Float

A float represents a 32 bits (or better) floating point number.

|l ocal a=1.0
| ocal b=0.234

String
Strings are an immutable sequence of characters to modify a string is necessary create a new one.

Squirrel's strings, behave like C or C++, are delimited by quotation marks(") and can contain escape se-
guences(\t,\a\b,\n\r,\v \f W \" \'\O,\xhhhh).

Verbatim string literals begin with @" and end with the matching quote. VVerbatim string literals also can
extend over aline break. If they do, they include any white space characters between the quotes:

local a = "I'ma wonderful string\n"

/1 has a newine at the end of the string

local x = @I'ma verbatimstring\n"

/1 the \n is copied in the string sane as \\n in a regular string "I'ma verbatim

The only exception to the "no escape sequence” rule for verbatim string literals is that you can put a
double quotation mark inside a verbatim string by doubling it:

local multiline = @
this is a nmultiline string
it will ""enmbed"" all the new line
characters

Null

The null value is a primitive value that represents the null, empty, or non-existent reference. The type
Null has exactly one value, called null.

The language

| ocal a=null

Bool

the bool data type can have only two. They aretheliteralst r ue and f al se. A bool value expresses the
validity of a condition (tells whether the condition istrue or false).

| ocal a = true;

Table

Tables are associative containers implemented as pairs of key/value (called adlot).

| ocal t
| ocal t

{

={}

est =
a=10
b=function(a) { return a+l; }

Array

Arrays are simple sequence of objects, their sizeis dynamic and their index starts always from 0.

local a=["I"'nt,"an","array"]
I ocal b=[null]
b[0] =a[2] ;

Function

Functions are similar to those in other C-like languages and to most programming languages in general,
however there are afew key differences (see below).

Class

Classes are associative containers implemented as pairs of key/value. Classes are created through a 'class
expression’ or a 'class statement'. class members can be inherited from another class object at creation
time. After creation members can be added until ainstance of the classis created.

Class instance

Class instances are created by calling acl ass obj ect . Instances, as tables, are implemented as pair
of key/value. Instances members cannot be dyncamically added or removed however the value of the
members can be changed.

The language

Generator

Generators are functions that can be suspended with the statement 'yield' and resumed later (see Generat-
ors).

Userdata

Userdata objects are blobs of memory(or pointers) defined by the host application but stored into Squir-
rel variables (See Userdata and UserPointers).

Thread

Threads are objects that represents a cooperative thread of execution, also known as coroutines.

Weak References

Weak References are objects that point to another(non scalar) object but do not own a strong reference
toit. (See Weak References).

Execution Context

The execution context is the union of the function stack frame and the function environment object(this).
The stack frame is the portion of stack where the local variables declared in its body are stored. The en-
vironment object is an implicit parameter that is automatically passed by the function caller (see Func-
tions). During the execution, the body of a function can only transparently refer to his execution context.
This mean that a single identifier can refer either to a local variable or to an environment object sot;
Global variables require a special syntax (see Variables). The environment object can be explicitly ac-
cessed by the keyword this.

Variables

There are two types of variables in Squirrel, local variables and tables/arrays slots. Because global vari-
ables are stored in atable, they are table slots.

A single identifier refersto alocal variable or asot in the environment object.
derefexp : = id;

_table["fo00"]
_array[10]

with tables we can also use the . syntax

derefexp :=exp '.' id

_table.foo

Squirrel first checks if an identifier is aloca variable (function arguments are loca variables) if not it

checksif it isamember of the environment object (this).

For instance:

The language

function testy(arg)
| ocal a=10;

print(a);
return arg;

will accessto local variable 'a and prints 10.

function testy(arg)

| ocal a=10;
return arg+f oo;

in this case 'foo’ will be equivalent to 'this.foo' or thig["foo"].

Global variables are stored in a table called the root table. Usually in the global scope the environment
object is the root table, but to explicitly access the global table from another scope, the slot name must
be prefixed with "' (::foo).

exp:="'"::"id

For instance:

function testy(arg)

| ocal a=10;
return arg+::foo;

accesses the global variable 'foo'.

However (since squirrel 2.0) if a variable is not local and is not found in the 'this' object Squirrel will
search it in theroot table.

function test() {
foo = 10;
}

is equivalent to write

function test()
if("foo" in this) {
this.foo = 10;
}else {
::foo = 10;
}

The language

Statements

A squirrel program is a simple sequence of statements.

stats := stat [';'|'\n"'] stats

Statements in squirrel are comparable to the C-Family languages (C/C++, Java, C# etc...): assignment,
function calls, program flow control structures etc.. plus some custom statement like yield, table and ar-
ray constructors (All those will be covered in detail later in this document). Statements can be separated
with anew line or ;' (or with the keywords case or default if inside a switch/case statement), both sym-
bols are not required if the statement is followed by }'".

Block

stat := '{' stats '}’

A sequence of statements delimited by curly brackets ({ }) iscalled block; ablock is a statement itself.

Control Flow Statements

squirrel implements the most common control flow statements. i f, while, do-while,
swi tch-case, for, foreach.

true and false

Squirrel has a boolean type(bool) however like C++ it considers null, O(integer) and 0.0(float) as false,
any other value is considered true.

if/felse

stat:="if" "(' exp ')' stat ['else' stat]
Conditionally execute a statement depending on the result of an expression.

if(a>b
a=b;

b=a+b;
return a;

while

stat:= "while' '"(' exp ')' stat

Executes a statement until the condition isfalse.

The language

function testy(n)

| ocal a=0;
whi | e(a<n) a+=1;
whi | e(1)
i f(a<0) break;
a- =1,
}
}
do/while
stat:= 'do' stat 'while' '(' expression ')’

switch

Executes a statement once, and then repeats execution of the statement until a condition expression eval-
uatesto false.

| ocal a=0;
do

print(a+"\n");
a+=1;
} whil e(a>100)

stat := 'switch’ ""(exp ') '{'
'case' case_exp ':'
stats
['default' ":'
st at s]

ye

Isacontrol statement allows multiple selections of code by passing control to one of the case statements
within its body. The control is transferred to the case label whose case_exp matches with exp if none of
the case match will jump to the default label (if present). A switch statement can contain any number if
case instances, if 2 case have the same expression result the first one will be taken in account first. The
default label is only allowed once and must be the last one. A break statement will jump outside the
switch block.

Loops

for

stat:= "for' '"(' [initexp] ';' [condexp] ';"' [incexp] ')' statenent

The language

Executes a statement as long as a condition is different than false.

for(local a=0;a<10; a+=1)
print(a+"\n");

/] or

glob <- null

for (gl ob=0; gl ob<10; gl ob+=1){
print(glob+"\n");

/1 or
for(;;){

print(loops forever+"\n");

foreach

"foreach' '"(' [index_id','] value_id 'in' exp ')' stat

Executes a statement for every element contained in an array, table, class, string or generator. If expisa
generator it will be resumed every iteration as long as it is aive; the value will be the result of 'resume
and the index the sequence number of the iteration starting from 0.

| ocal a=[10, 23, 33, 41, 589, 56]
foreach(idx,val in a)

print("index="+i dx+" val ue="+val +"\ n");
/I or
foreach(val in a)

print("val ue="+val +"\n");

break

stat := 'break’

The break statement terminates the execution of aloop (for, foreach, while or do/while) or jumps out of
switch statement;

continue

stat := 'continue'

The continue operator jumps to the next iteration of the loop skipping the execution of the following
statements.

return

stat:= return [exp]

10

The language

The return statement terminates the execution of the current function/generator and optionally returns
the result of an expression. If the expression is omitted the function will return null. If the return state-
ment is used inside a generator, the generator will not be resumable anymore.

yield

stat := yield [exp]
(see Generators).

Local variables declaration

initz ;=i
stat := "1

Local variables can be declared at any point in the program; they exist between their declaration to the
end of the block where they have been declared. EXCEPTION: alocal declaration statement is allowed
asfirst expressionin afor loop.

for(local a=0; a<10; a+=1)
print(a);

Function declaration

funcnane :=id ['::' id]
stat:= "function' id ["::" id]+ "('" args ")'[':" "('" args ')'] stat

creates a new function.

Class declaration

menberdecl :=id '=" exp [';'] | '"[' exp']" "= exp [';'] | functionstat | 'const
stat:= 'class' derefexp ['extends' derefexp] '({'
[menber decl]
I}I

creates anew class.

try/catch

stat:= "try' stat 'catch' '(' id"')"' stat

The try statement encloses a block of code in which an exceptional condition can occur, such as a
runtime error or athrow statement. The catch clause provides the exceptionhandling code. When a catch

11

The language

clause catches an exception, itsid is bound to that exception.

throw
stat:= "throw exp
Throws an exception. Any value can be thrown.
const
stat:= '"const' id '=" "Integer | Float | StringLiteral
Declares a constant (see Constants & Enumerations).
enum
enunerations := (‘id '='" Integer | Float | StringLiteral) [‘,"]
stat:= "enum id '{' enunerations '}’

Declares an enumeration (see Constants & Enumerations).

expression statement

stat := exp

In Squirrel every expression is also allowed as statement, if so, the result of the expression is thrown
away.

Expressions

Assignment(=) & new slot(<-)

exp := derefexp '=" exp
exp: = derefexp '<-' exp

squirrel implements 2 kind of assignment: the normal assignment(=)
a=10;

and the "new dlot" assignment.

a <- 10;

12

The language

The new slot expression allows to add a new dot into atable(see Tables). If the dlot already existsin the
table it behaves like a normal assignment.

Operators

?: Operator

exp := exp_cond '?" expl ':' exp2

conditionally evaluate an expression depending on the result of an expression.

Arithmetic

exp: = '"exp' op 'exp'

Squirrel supports the standard arithmetic operators +, -, *, / and %. Other than that is also supports com-
pact operators (+=,-=,*=,/=,%=) and increment and decrement operators(++ and --);

a+=2;

/[lis the same as witing
a=a+2;

X++

/lis the same as witing
X=x+1

All operators work normally with integers and floats; if one operand is an integer and one is a float the
result of the expression will be float. The + operator has a special behavior with strings; if one of the op-
erands is a string the operator + will try to convert the other operand to string as well and concatenate
both together. For instances and tables, _tostring is invoked.

Relational

exp: = 'exp' op 'exp'

Relational operatorsin Squirrel are: == <<=>>=1=

These operators return null if the expression is false and a value different than null if the expression is
true. Internally the VM uses the integer 1 as true but this could change in the future.

Logical

exp :
exp :

exp op exp
"1t oexp

Logica operatorsin Squirrel are: && || !

The operator & & (logical and) returns null if itsfirst argument is null, otherwise returns its second argu-
ment. The operator || (logical or) returns its first argument if is different than null, otherwise returns the
second argument.

13

The language

The 'I" operator will return null if the given value to negate was different than null, or a value different
than null if the given value was null.

in operator

exp: = keyexp 'in' tabl eexp

Tests the existence of a dlot in a table. Returns a value different than null if keyexp is a valid key in
tableexp

| ocal t=

foo="1"m foo",
[123]="1"'m not foo"
}

0" int) dostuff("yep");

if("fo
if(123 in t) dostuff():

instanceof operator

exp: = i nstanceexp 'instanceof' classexp

Testsif aclassinstance is an instance of a certain class. Returns a value different than null if instanceexp
is an instance of classexp.

typeof operator

exp: = 'typeof' exp

returns the type name of avalue as string.

| ocal a={}, b="squirrel
print(typeof a); //will print "table"
print(typeof b); //wll print "string"

comma operator

exp:=exp ',' exp

The comma operator evaluates two expression left to right, the result of the operator is the result of the
expression on the right; the result of the left expression is discarded.

| ocal j =0, k=0;
for(local i=0; i<10; i++ , j+4+)
{
k =i +j;
}

14

The language

| ocal a,k;
a = (k=1,k+2); //a beconmes 3

Bitwise Operators

exp: = '"exp' op 'exp'
exp :="'~" exp

Squirrel supports the standard c-like bit wise operators & ,|,*,~,<<,>> plus the unsigned right shift oper-
ator >>>. The unsigned right shift works exactly like the normal right shift operator(>>) except for treat-
ing the left operand as an unsigned integer, so is not affected by the sign. Those operators only work on
integers values, passing of any other operand type to these operators will cause an exception.

Operators precedence

-,~ 1, typeof |, ++, -- highest

&

N

|

&&, in

|l

?:

+= =, -=

, (coma oper at or) lowest

Table constructor

tslots := (‘id ‘= exp | ‘[‘ exp ‘] ‘= exp) [',"]
exp := ‘{" [tslots] ‘}’
Creates anew table.

local a={} //create an enpty table

A table constructor can also contain slots declaration; With the syntax:

15

The language

id=exp [',"]
anew sot withid askey and exp as value is created

| ocal a=

slotl1l="1'"mthe sl ot val ue"

An alternative syntax can be

[0oexpl "]t o= exp2 [', 7]
A new dlot with expl as key and exp2 as value s created

| ocal a=

[1]="1"m the val ue"

both syntaxes can be mixed

| ocal table=

a=10,

b="string",

[10] ={},

function bau(a, b)

return a+b;

The comma between slotsis optional.

delegate

exp: = ‘del egate’ parentexp : exp

Sets the parent of atable. The result of parentexp is set as parent of the result of exp, the result of the ex-
pression is exp (see Delegation).

clone

exp: = ‘clone’ exp

Clone performs shallow copy of a table, array or class instance (copies all dots in the new object
without recursion). If the source table has a delegate, the same delegate will be assigned as delegate (not

16

The language

copied) to the new table (see Delegation).
After the new object isready the“_cloned” meta method is called (see M etamethods).

When a class instance is cloned the constructor is not invoked(initializations must rely on _cl oned in-
stead

Array constructor
exp := ‘[’ [explist] ‘]’

Creates anew array.

a <- [] /lcreates an enpty array

arrays can be initialized with values during the construction

a<- [1,"string!",[]1,{}] //creates an array with 4 elenents

Tables

Tables are associative containers implemented as pairs of key/value (called slot); values can be any pos-
sible type and keys any type except 'null’. Tables are squirrel's skeleton, delegation and many other fea-
tures are all implemented through this type; even the environment, where global variables are stored, isa
table (known as root table).

Construction

Tables are created through the table constructor (see Table constructor)

Slot creation

Adding anew dot in a existing table is done through the "new slot" operator '<-'; this operator behaves
like a normal assignment except that if the slot does not existsit will be created.

| ocal a={}
The following line will cause an exception because the slot named 'newslot' does not exist in the table
‘a

a.newsl ot = 1234

this will succeed:

17

The language

a. newsl ot <- 1234;

or

a[1] <- "I'mthe value of the new slot";

Slot deletion

exp: = del ete derefexp

Deletion of a dot is done through the keyword delete; the result of this expression will be the value of
the deleted slot.

a <- {
test1=1234
del et emre="now"

delete a.testl
print(delete a.deleteme); //this will print the string "now'

Arrays

An array is a sequence of values indexed by a integer number from O to the size of the array minus 1.
Arrays elements can be obtained through their index.

local a=[“l'"ma

st
print(typeof a[0])
print(typeof a[l])

ring”, 123]
/[lprints "string"
/[lprints "integer"

Resizing, insertion, deletion of arrays and arrays elements is done through a set of standard functions
(see built-in functions).

Functions

Functions are first class values like integer or strings and can be stored in table slots, local variables, ar-
rays and passed as function parameters. Functions can be implemented in Squirrel or in a native lan-
guage with calling conventions compatible with ANS| C.

Function declaration

Functions are declared through the function expression

| ocal a= function(a,b,c) {return a+b-c;}

18

The language

or with the syntactic sugar

function ciao(a,b,c)

return at+b-c;

that is equivalent to

this.ciao <- function(a,b)

return a+b-c;

isalso possible to declare something like
T <-
function T::ciao(a,b,c)

return a+b-c;

//that is equivalent to wite
T.ciao <- function(a,b,c)

return a+b-c;

/1 or
T < {
function ciao(a,b,c)
return a+b-c;
}
}

Default Paramaters
Squirrel's functions can have default parameters.

A function with default parameters is declared as follows:

function test(a,b,c = 10, d = 20)
{

}

when the function t est isinvoked and the parameter ¢ or d are not specified, the VM autometically as-

19

The language

signs the default value to the unspecified parameter. A default parameter can be any valid squirrel ex-
pression. The expression is evaluated at runtime.

Function with variable number of paramaters
Squirrel's functions can have variable number of parameters(varargs functions).

A vararg function is declared by adding three dots ("...") at the end of its parameter list.

When the function is called all the extra parameters will be accessible through the pseudo array called
var gv.

var gv can only indexed with a numeric object(float or integer). The number of parameter contained in
var gv isstored in the pseudo variable var gc.
Note that vargv is not a real object, it can't be assigned or passed as parameter.

function test(a,b,...)
{
for(local i = 0; i< vargc; i++)
{
crprint("varparam"+i+" = "+vargv[i]+"\n");
}
}

test("goes in a","goes in b",0,1,2,3,4,5,6,7,8);

Function calls

exp: = derefexp ‘(‘ explist ‘)’

The expression is evaluated in this order: derefexp after the explist (arguments) and at the end the call.

Every function call in Squirrel passes the environment object ‘this as hidden parameter to the called
function. The ‘this' parameter is the object where the function was indexed from.

If we call afunction with this syntax

tabl e. foo(a)

the environment object passed to foo will be ‘table’

foo(x,y) // equivalent to this.foo(x,y)

The environment object will be ‘this’ (the same of the caller function).

Binding an environment to a function

while by default asquirrel function call passes as environment object 'this, the object where the function
was indexed from. However, is aso possible to statically bind an evironment to a closure using the built-
in method cl osur e. bi ndenv(env_obj) . The method bindenv() returns a new instance of a clos-
ure with the environment bound to it. When an environment object is bound to a function, every time the

20

The language

function isinvoked, its'this' parameter will always be the previously bound environent. This mechanism
isuseful to implement callbacks systems similar to C# delegates.

Note

The closure keeps a weak reference to the bound environmet object, because of this if the ob-
ject is deleted, the next call to the closure will result inanul | environment object.

Free variables

Free variables are variables referenced by a function that are not visible in the function scope. In the fol-
lowing example the function foo() declares x, y and testy as free variables.

| ocal x=10, y=20
testy <- “I'mtesty”
function foo(a,b):(x,y,testy)

ciprint(testy);
return atb+x+y;

The value of afree variable is frozen and bound to the function when the function is created; the valueis
passed to the function as implicit parameter every timeis called.

Tail recursion

Tail recursion is amethod for partially transforming arecursion in a program into an iteration: it applies
when the recursive calls in a function are the last executed statements in that function (just before the re-
turn). If this happenes the squirrel interpreter collapses the caller stack frame before the recursive cal;
because of that very deep recursions are possible without risk of a stack overflow.

function | oopy(n)
i f(n>0){

coprint(“n="+n+"\n");
return | oopy(n-1);

}
| oopy(1000);

Classes

Squirrel implements a class mechanism similar to languages like Java/C++/etc... however because of its
dynamic nature it differs in several aspects. Classes are first class objects like integer or strings and can
be stored in table dots local variables, arrays and passed as function parameters.

Class declaration

A class object is created through the keyword 'class' . The class object follows the same declaration syn-
tax of atable(see tables) with the only difference of using';' as optional separator rather than','.

21

The language

For instance:

cl ass Foo {
// constructor
constructor(a)

{
testy = ["stuff", 1,2, 3];

// menber function
function PrintTesty()

foreach(i,val in testy)

coprint("idx = "+ +"

}

/] property
testy = null;

}

the previous code examples is a syntactic sugar for:

Foo <- class {
// constructor
constructor(a)
{
testy

["stuff", 1,2, 3];
testy -

- a
/I menber function
function PrintTesty()

{

foreach(i,val in testy)

rprint("idx = "+Hi+"

}

/] property
testy = null;

}

in order to emulate namespaces, is also possible to declare something like this

/ljust 2 regular nested tables
FakeNanmespace <- {

Uils = {}
}

cl ass FakeNanespace. Util s. Super Cl ass {
constructor()

"+val +" \n");

"+val +" \n");

s print("FakeNanmespace. Utils. Superd ass")

}
functi on DoSoret hi ng()
{
::print("DoSonet hing()")

22

The language

function FakeNamespace:: Utils:: Superd ass:: DoSonet hi ngEl se()

s print("FakeNamespace:: Uil s:: Superd ass: : DoSonet hi ngEl se()")
}

| ocal testy = FakeNanespace. Utils. Superd ass();
t esty. DoSonet hi ng();
t esty. DoSonet hi ngEl se();

After its declaration, methods or properties can be added or modified by following the same rules that
apply to atable(operator <- and =).

// adds a new property

Foo.stuff <- 10;

[/ modifies the default value of an existing property
Foo.testy = "lI'ma string";

/1 adds a new net hod
function Foo:: DoSonet hi ng(a, b)

{
}

After aclassisinstantiated is no longer possible to add new properties or methods to it.

return a+tb;

Static variables
Squirrel's classes support static member variables. A static variable shares its value between all instances
of the class. Statics are declared by prefixing the variable declaration with the keyword st at i ¢; the de-
claration must be in the class body.

Note
Statics are read-only.

cl ass Foo {
constructor ()

//..stuff
}
name = "normal vari able";
//static variable
static classnane = "The class nane is foo";

Class attributes
Classes allow to associate attributes to it's members. Attributes are a form of metadata that can be used
to store application specific informations, like documentations strings, properties for IDEs, code gener-
ators etc... Class attributes are declared in the class body by preceding the member declaration and are
delimited by the symbol </ and/ >. Here an example:

class Foo </ test = "I'ma class level attribute" />{
</ test = "freakin attribute" /> //attributes of PrintTesty
function PrintTesty()

foreach(i,val in testy)

{

crprint("idx = "+i+" = "+val +" \n");

23

The language

}

</ flippy = 10 , second =1[1,2,3] /> //attributes of testy
testy = null;

}

Attributes are, matter of fact, atable. Squirrel uses</ /> syntax instead of curly brackets{} for the at-
tribute declaration to increase readability.

Thismeansthat all rules that apply to tables apply to attributes.

Attributes can be retrieved through the built-in function cl as-
sobj . getattri butes(nenbernane) (see built-in functions). and can be modified/added
through the built-in function cl assobj . set at tri but es(nenber nane, val).

the following code iterates through the attributes of all Foo members.

f oreach(nenber, val in Foo)

{
Diprint(nmenmber+"\n");
| ocal attr;
if((attr = Foo.getattributes(nmenber)) !'= null) {
foreach(i,v in attr)
rprint("\t"+i+" = "+(typeof v)+"\n");
}
el se {
coprint("\t<no attributes>\n")
}
}

Class instances

The class objects inherits several of the table's feature with the difference that multiple instances of the
same class can be created. A classinstance is an object that share the same structure of the table that cre-
ated it but holds is own values. Class instantiation uses function notation. A class instance is created by
calling aclass object. Can be useful to imagine aclass like a function that returns a class instance.

//creates a new i nstance of Foo
[ocal inst = Foo();

When a class instance is created its member are initialized with the same value specified in the class de-
claration.

When a class defines a method called 'constructor’, the class instantiation operation will automatically
invoke it for the newly created instance. The constructor method can have parameters, this will impact
on the number of parameters that the instantiation operation will require. Constructors as normal func-
tions can have variable number of parameters (using the parameter . . .).

cl ass Rect {
constructor (w, h)
{
width = w,
hei ght = h;

24

The language

X = 0;
y = 0;
width = null;
hei ght = nul|;
}
/1 Rect's constructor has 2 paraneters so the class has to be 'called
//with 2 paraneters
| ocal rc = Rect (100, 100);

After an instance is created, its properties can be set or fetched following the same rules that apply to
tables. Methods cannot be set.

I nstance members cannot be removed.

The class object that created a certain instance can be retrieved through the built-in function i n-
st ance. get cl ass() (seebuilt-in functions)
The operator i nst anceof testsif aclassinstanceis an instance of acertain class.

| ocal rc = Rect (100, 100);
if(rc instanceof ::Rect) {

rprint("lt's a rect");
el se {

}

crprint("lt isn't a rect");

Inheritance

Squirrel's classes support single inheritance by adding the keyword ext ends, followed by an expres-
sion, in the class declaration. The syntax for aderived classis the following:

cl ass Super Foo extends Foo {
function DoSonething() {
crprint("1' mdoing sonething");
}

When a derived classis declared, Squirrel first copies al base's members in the new class then proceeds
with evaluating the rest of the declaration.

A derived class inherit all members and properties of it's base, if the derived class overrides a base func-
tion the base implementation is shadowed. It's possible to access a overridden method of the base class
by fetching the method from the base class object.

Here an example:

cl ass Foo {
function DoSoret hi ng() {
ciprint("1'mthe base");
}

b

cl ass Super Foo extends Foo {

25

The language

[/ overridden nethod
functi on DoSonet hi ng() {
//calls the base nethod
: : Foo. DoSonmet hi ng() ;
cprint("1' mdoing sonething");

Same rule apply to the constructor. The constructor is a regular function (apart from being automatically
invoked on contruction).

cl ass Base {
constructor()

ciprint("Base constructor\n");

}

class Child extends Base {
constructor()

.. Base. constructor();
coprint("Child constructor\n");

}
local test = Child();

The base class of a derived class can be retrieved through the keyword par ent . par ent is a 'pseudo
dot'. The par ent slot cannot be set.

| ocal thebasecl ass = Super Foo. parent;

Note that because methods do not have special protection policies when calling methods of the same ob-
jects, a method of a base class that calls a method of the same class can end up calling a overridden
method of the derived class.

cl ass Foo {
function DoSoret hi ng() {
ciprint("1'mthe base");

%uncti on Dolt()
{ DoSoret hi ng() ;
s
cl ass Super Foo extends Foo {
[/ overridden nethod

function DoSoret hi ng() {
crprint("1'mthe derived");

%unction Dol t ()
} .. Foo.Dolt();

26

The language

//creates a new instance of SuperFoo
| ocal inst = SuperFoo();

[lprints "I'"mthe derived"
inst.Dolt();

Metamethods

Class instances allow the customization of certain aspects of the their semantics through metameth-
ods(see Metamethods). For C++ programmers. "metamethods behave roughly like overloaded operat-
ors'. The metamethods supported by classes are _add, _sub, _nul, _div, _unm
_nmodul o, _set, _get, _typeof, nexti, _cnp, _call, _delslot, tostring

Class objectsinstead support only 2 metamethods: _newrenber and _i nherited
the following example show how to create a class that implements the metamethod _add.

cl ass Vector3 {
constructor(...)

{
if(vargc >= 3) {
x = vargv[O0];
y = vargv[1];
z = vargv|[2];
} }
function _add(other)
{
return ::Vector3(x+other.x, y+ot her.y, z+ot her. z);
}
x = 0;
y = 0;
z = 0;
}
| ocal vO = Vector3(1,2,3)
local vl = Vector3(11,12,13)
local v2 = v0 + v1;
ciprint(v2. x+", "+v2. y+", " +v2, z+"\ n");

Since version 2.1, classes support 2 metamethods _i nherited and _newnrenber. i nheritedis
invoked when a class inherits from the one that implements _i nheri t ed. _newnenber isinvoked
for each member that is added to the class(at declaration time).

Generators

A function that contains a yield statement is called ‘generator function’. When a generator function is
called, it does not execute the function body, instead it returns a new suspended generator. The returned
generator can be resumed through the resume statement while it is alive. The yield keyword, suspends
the execution of a generator and optionally returns the result of an expression to the function that re-
sumed the generator. The generator dies when it returns, this can happen through an explicit return state-
ment or by exiting the function body; If an unhandled exception (or runtime error) occurs while a gener-

27

The language

ator is running, the generator will automatically die. A dead generator cannot be resumed anymore.

function geny(n)

for(local i=0;i<n;i+=1)
yield i;
return null;
}
| ocal gtor=geny(10);
| ocal x;

whi | e(x=resune gtor) print(x+"\n”);

the output of this program will be

OCO~NOUIRRWNELO

generators can aso be iterated using the foreach statement. When a generator is evaluated by f or each,
the generator will be resumed for each iteration until it returns. The value returned by ther et ur n state-
ment will be ignored.

Constants & Enumerations

Squirrel allows to bind constant values to an identifier that will be evaluated compile-time. This is
archieved though constants and enumarations.

Constants

Constants bind a specific value to an indentifier. Constants are similar to global values, except that they
are evaluated compile time and their value cannot be changed.

constants values can only be integers, floats or string literals. No expression are allowed. are declared
with the following syntax.

const foobar = 100;
const floatbar = 1.2;
const stringbar = "I'ma contant string";

constants are always globally scoped, from the moment they are declared, any following code can refer-
ence them. Constants will shadow any global slot with the same name(the global slot will remain visible

28

The language

by using the: : syntax).

| ocal x = foobar * 2;

Enumerations

As Constants, Enumerations bind a specific value to a name. Enumerations are also evaluated compile
time and their value cannot be changed.

An enum declaration introduces a new enumeration into the program. Enumerations values can only be
integers, floats or string literals. No expression are allowed.

enum Stuff {
first, //t
second, //
| third //th

or

enum St uff {
first = 10
second = "string"
third = 1.2

}

An enum value is accessed in a manner that's similar to accessing a static class member. The name of
the member must be qualified with the name of the enumeration, for example St uf f . second. Enu-
merations will shadow any global slot with the same name(the global slot will remain visible by using
the: : syntax).

local x = Stuff.first * 2;

Implementation notes

Enumerations and Contants are a compile-time feature. Only integers, string and floats can be declared
as const/enum; No expressions are allowed(because they would have to be evaluated compile time).
When a const or an enum is declared, it is added compile time to theconst t abl e. Thistableis stored
inthe VM shared state and is shared by the VM and all itsthreads. The const t abl e isaregular squir-

29

The language

rel table; In the same way asther oot t abl e it can be modified runtime. Y ou can access the const -
t abl e through the built-in function get const t abl e() and also change it through the built-in func-
tionset const t abl e()

here some example:

//create a constant

getconsttabl e()["sonething"] <- 10"

//create an enuneration

getconsttabl e()["sonet hi ngel se"] <- { a = "10", ¢ = "20", d = "200"};
/1 del etes the constant

del ete getconsttabl e()["sonething"]

/1 del etes the enuneration

del ete getconsttabl e()["somet hi ngel se"]

This system allows to procedurally declare constants and enumerations, it is also possible to assign any
squirrel type to a constant/enumeration(function,classes etc...). However this will make serialization of a
code chunk impossible.

Threads

Squirrel supports cooperative threads(also known as coroutines). A cooperative thread is a subroutine
that can suspended in mid-execution and provide a value to the caller without returning program flow,
then its execution can be resumed later from the same point where it was suspended. At first look a
Squirrel thread can be confused with a generator, in fact their behaviour is quite similar. However while
agenerator runsin the caller stack and can suspend only the local routine stack a thread has its own exe-
cution stack, global table and error handler; This allows a thread to suspend nested calls and have it's
own error policies.

Using threads

Threads are created through the built-in function ‘newthread(func)’; this function gets as parameter a
squirrel function and bind it to the new thread objecs(will be the thread body). The returned thread ob-
ject isinitialy in ‘idle state. the thread can be started with the function 'threadobj.call()'; the parameters
passed to 'call' are passed to the thread function.

A thread can be be suspended calling the function suspend(), when this happens the function that
wokeup(or started) the thread returns (If a parametrer is passed to suspend() it will be the return value of
the wakeup function , if no parameter is passed the return value will be null). A suspended thread can be
resumed calling the funtion 'threadobj.wakeup', when this happens the function that suspended the
thread will return(if a parameter is passed to wakeup it will be the return value of the suspend function,
if no parameter is passed the return value will be null).

A thread terminates when its main function returns or when an unhandled exception occurs during its
execution.

Eunction coroutine_test(a,b)
ciprint(a+" "+b+"\n");
| ocal ret = ::suspend("suspend 1");
ciprint("the coroutine says "+ret+"\n");
ret = ::suspend("suspend 2");
ciprint("the coroutine says "+ret+"\n");
ret = ::suspend("suspend 3");

30

The language

ciprint("the coroutine says "+ret+"\n");
return "1'm done"

}

| ocal coro = ::newthread(coroutine_test);
| ocal susparam = coro.call("test","coroutine"); //starts the coroutine

local i = 1;

do

{
ciprint("suspend passed ("+susparamt")\n")
susparam = coro. wakeup("ciao "+i);
+4i]

}whi | e(coro. getstatus()=="suspended")

coprint("return passed ("+susparam+")\n")

the result of this program will be

test coroutine

suspend passed (suspend 1)
the coroutine says ciao 1
suspend passed (suspend 2)
the coroutine says ciao 2
suspend passed (suspend 3)
the coroutine says ciao 3
return passed (1'm done).

the following is an interesting example of how threads and tail recursion can be combined.
function statel()

;. suspend("statel");
return state2(); //tail cal

}
function state2()
{
::suspend("state2");
return state3(); //tail cal
}
function state3()
{
;. suspend("state3");
return statel(); //tail cal
}
| ocal statethread = ::new hread(statel)

ciprint(statethread.call()+"\n");

for(local i = 0; i < 10000; i++)
;o print(statethread. wakeup()+"\n");

31

The language

Weak References

The weak references allows the programmers to create references to objects without influencing the life-
time of the object itself. In squirrel Weak references are first-class objects created through the built-in
method obj.weakref(). All types except null implement the weakref() method; however in boolsintegers
and float the method simply returns the object itself(this because this types are always passed by value).
When a weak references is assigned to a container (table slot,array,class or instance) is treated differ-
ently than other objects; When a container sot that hold a weak reference is fetched, it always returns
the value pointed by the weak reference instead of the weak reference object. This allow the program-
mer to ignore the fact that the value handled is weak. When the object pointed by weak reference is des-
troyed, the weak reference is automatically set to null.

local t =

local a = ["first","second","third"]

/lcreates a weakref to the array and assigns it to a table slot
t

.thearray = a.weakref();

The table dot 'thearray' contains a weak reference to an array. The following line prints "first", because
tables(and al other containers) always return the object pointed by aweak ref

print(t.thearray[0]);

the only strong reference to the array is owned by the local variable 'a, so because the following line as-
signsainteger to 'a the array is destroyed.

a = 123;

When an object pointed by a weak ref is destroyed the weak ref is automatically set to null, so the fol-
lowing line will print "null”.

crprint(typeof (t.thearray))

Handling weak references explicitly

If aweak reference is assigned to alocal variable, then is treated as any other value.

local t = {}
| ocal weakobj = t.weakref();

the following line prints "weakref".
;o print(typeof (weakobj))

the object pointed by the weakref can be obtained through the built-in method weakref.ref().

The following line prints "table".

32

The language

coprint(typeof (weakobj.ref()))

Delegation

Squirrel supports implicit delegation. Every table or userdata can have a parent table (delegate). A par-
ent table is a normal table that alows the definition of special behaviors for his child. When atable (or
userdata) is indexed with a key that doesn’t correspond to one of its slots, the interpreter automatically
delegates the get (or set) operation to its parent.

iEntity < {

function Entity::DoStuff()
{

Jiprint(_nane);

}

[ocal newentity=del egate Entity : {
_nane="1"mthe new entity”

newentity.DoStuff(); //prints “I’'mthe new entity”

The parent of atable can be retreived through keyword par ent . par ent isa'pseudo slot'. The par -
ent dot cannot be set, the del eget e statement has to be used instead.

| ocal thedel egate = newentity. parent;

Metamethods

Metamethods are a mechanism that allows the customization of certain aspects of the language se-
mantics. Those methods are normal functions placed in a table parent(delegate) or class declaration; Is
possible to change many aspect of a table/class instance behavior by just defining a metamethod. Class
objects(not instances) supports only 2 metamethods _newmember,_inherited.

For example when we use relational operators other than ‘=="on 2 tables, the VM will check if the table
has a method in his parent called *_cmp’ if so it will call it to determine the relation between the tables.

| ocal conpar abl e={
_cnmp = function (other)

i f (nane<ot her.name)return -1;
i f (nane>ot her. nanme)return 1;
return O,

}

| ocal a=del egate conparable : { nane="Al berto" };
| ocal b=del egate conparable : { name="Wuter" };

33

The language

i f(a>b)
print("a>b")

el se
print("b<=a");

for classes the previous code become:

cl ass Conparabl e {
constructor(n)

nane = n;
function _cnp(other)

i f (nane<ot her.nanme) return -1;
i f (nane>ot her.name) return 1;
return O;

name = nul | ;

}

| ocal a
|l ocal b

i f(a>b)
print("a>b")

el se
print("b<=a");

Conpar abl e(" Al berto");
Conpar abl e("Wuter");

_set
invoked when the index idx is not present in the object or in its delegate chain
function _set(idx,val) //returns val
_get
invoked when the index idx is not present in the object or in its delegate chain
function _get(idx) //return the fetched val ues
_newslot
invoked when a script tries to add anew slot in atable.
functi on _newsl ot (key,value) //returns val
if the slot already exists in the target table the method will not be invoked also if the “new slot” operator
is used.
_delslot

The language

invoked when a script deletes adot from atable.
if the method isinvoked squirrel will not try to delete the slot himself

function _del sl ot (key)

add

the + operator
function _add(op) //returns this+op

sub

the — operator (like _add)

mul

the * operator (like _add)

div

the / operator (like _add)

_modulo

the % operator (like _add)

unm

the unary minus operator

function _unm()

_typeof
invoked by the typeof operator on tables ,userdata and class instances

function _typeof() //returns the type of this as string

_cmp

invoked to emulate the < > <= >= operators

function _cnp(other)

returns an integer:

>0 |if this > other

35

The language

0 \if this == ot her
<0 \if this < other

_call

invoked when atable, userdata or classinstanceis called

function _call (original _this, parans..)

_cloned

invoked when atable or class instance is cloned(in the cloned table)

function _cloned(original)

_nexti

invoked when a userdata or classinstanceis iterated by a foreach loop

function _nexti (previdx)

if previdx==null it means that it is the first iteration. The function has to return the index of the ‘ next’
value.

_tostring

invoked when during string conacatenation or when the pr i nt function prints a table, instance or user-
data. The method is aso invoked by the sq_tostring() api

function _tostring()

must return a string representation of the object.

_inherited

invoked when a class object inherits from the class implementing _i nheri t ed thet hi s contains the
new class.

function _inherited(attributes)

return valueisignored.

_newmember

invoked for each member declared in a class body(at declaration time).

functi on _newrenber (i ndex, val ue, attri but es)

if the function isimplemented, members will not be added to the class.

36

The language

Built-in functions

The squirrel virtual machine has a set of built utility functions.

Global symbols

array(size,[fill])
create and returns array of a specified size.if the optional parameter fi | | is specified its value will be
used to fill the new array'sdlots. If thefi | | paramter isomitted nul | isused instead.

set errorhandl er (func)
sets the runtime error handler

set debughook(hook_f unc)
sets the debug hook

enabl edebugi nf o(enabl e)
enable/disable the debug line information generation at compile time. enable != null enables . enable ==
null disables.

getroottabl e()
returns the root table of the VM.

setroottabl e(table)
sets the root table of the VM.

get consttabl e()
returns the const table of the VM.

set consttabl e(tabl e)
sets the const table of the VM.

assert (exp)
throws an exception if exp isnull

print (x)
prints x in the standard output

conpi | estring(string,[buffernane])
compiles a string containing a squirrel script into afunction and returns it

| ocal conpil edscript=conpilestring("::print(\"ciao\")");
//run the script
conpi | edscript();

37

The language

col | ect gar bage()
calls the garbage collector and returns the number of reference cycles found(and del eted)

type(obj) o o
return the raw’ type of an object without invoking the metatmethod *_typeof'.

get st acki nfos(1 evel)
returns the stack informations of a given call stack level. returns atable formatted as follow:

{
func="DoStuff", //function nane
src="test.nut", //source file
i ne=10, //1ine nunber
locals = { /la table containing the | ocal variables
a=10,
testy="I"ma string"
}
}

level = 0 isthe current function, level = 1 isthe caller and so on. If the stack level doesn't exist the func-
tion returns null.

newt hr ead(t hr eadf unc)
creates a new cooperative thread object(coroutine) and returns it

version
string values describing the version of VM and compiler.

charsize
size in bytes of the internal VM rapresentation for characters(1 for ASCII builds 2 for UNICODE
builds).

intsize
sizein bytes of the internal VM rapresentation for integers(4 for 32bits builds 8 for 64bits builds).

Default delegates

Except null and userdata every squirrel object has a default delegate containing a set of functions to ma-
nipulate and retrieve information from the object itself.

Integer

t of | oat ()
convert the number to float and returns it

38

The language

tostring()
converts the number to string and returns it

t oi nt eger ()
returns the value of the integer(dummy function)

t ochar ()
returns a string containing a single character rapresented by the integer.

weakr ef ()
dummy function, returns the integer itself.

Float

tof | oat ()

returns the value of the float(dummy function)

t oi nt eger ()

converts the number to integer and returns it

tostring()

converts the number to string and returns it

tochar ()

returns a string containing a single character rapresented by the integer part of the float.

weakr ef ()

dummy function, returns the float itself.
Bool

t of | oat ()

returns1.0fort r ue 0.0for f al se

t oi nt eger ()

returns1fort rue Ofor f al se

tostring()

returns "true" for t r ue "false" for f al se

weakr ef ()

dummy function, returns the bool itself.
String

39

The language

len()
returns the string length

t oi nt eger ()
converts the string to integer and returnsit

t of | oat ()
converts the string to float and returnsiit

tostring()
returns the string(dummy function)

slice(start,[end])

returns a section of the string as new string. Copies from start to the end (not included). If start is negat-
ive the index is calculated as length + start, if end is negative the index is calculated as length + start. If
end isomitted end is equal to the string length.

find(substr,[startidx])

search a sub string(substr) starting from the index startidx and returns the index of its first occurrence. If
startidx is omitted the search operation starts from the beginning of the string. The function returns null
if substr isnot found.

t ol ower ()
returns alowercase copy of the string.

t oupper ()
returns a uppercase copy of the string.

weakr ef ()
returns aweak reference to the object.

Table

I en()
returns the number of slots contained in atable

rawget (key)
tries to get avalue from the slot ‘key’ without employ delegation

rawset (key, val)
sets the dot ‘key’ with the value ‘val’ without employing delegation. If the slot do not exists, it will be
created.

rawdel et e()
deletes the slot key without emplying delegetion and retunrs his value. if the slo does not exists returns
alwaysnull.

40

The language

rawi n(key)
returns true if the slot *key’ exists. the function has the same eddect as the operator 'in" but does not em-
ploy delegation.

weakr ef ()
returns aweak reference to the object.

tostring()
triesto invoke the _tostring metamethod, if failed. returns " (table : pointer)".

clear ()
removes al the ot from the table

Array

l en()
returns the length of the array

append(val)
appendsthevalue ‘val’ at the end of the array

push(val)
appendsthevalue ‘val’ at the end of the array

ext end(array)
Extends the array by appending al the itemsin the given array.

pop()
removes a value from the back of the array and returnsit.

top()
returns the value of the array with the higher index

i nsert (idx,val)
inserst the value ‘val’ at the position ‘idx’ in the array

renove(i dx)
removes the value at the position ‘idx’ in the array

resize(size,[fill])

resizes the array, if the optional parameter fi | | is specified its value will be used to fill the new array's
dots(if the size specified is bigger than the previous size) . If the fi | | paramter is omitted nul | is
used instead.

sort ([conpare_func])

41

The language

sorts the array. a custom compare function can be optionally passed.The function prototype as to be the
following.

function custom conpare(a,b)

{
if(a>b) return 1
el se if(a<b) return -1
return O;

}

reverse()

reverse the elements of the array in place

slice(start,[end])

returns a section of the array as new array. Copies from start to the end (not included). If start is negative
the index is calculated as length + start, if end is negative the index is calculated as length + start. If end
is omitted end is equal to the array length.

weakr ef ()
returns aweak reference to the object.

tostring()
returns the string "(array : pointer)".

cl ear ()
removes al theitems from the array

Function

call (_this,args.)
calls the function with the specified environment object(’'this') and parameters

pcall (_this,args..)
calls the function with the specified environment object(’this') and parameters, this function will not in-
voke the error callback in case of failure(pcall stays for 'protected call’)

acal | (array_args)
calls the function with the specified environment object(’this’) and parameters. The function accepts an
array containing the parameters that will be passed to the called function.

pacal | (array_args)

calls the function with the specified environment object(’this’) and parameters. The function accepts an
array containing the parameters that will be passed to the called function.This function will not invoke
the error callback in case of failure(pacall stays for 'protected array call’)

weakr ef ()
returns aweak reference to the object.

42

Class

The language

tostring()
returns the string " (closure : pointer)".

tostring()
returns the string "(closure : pointer)".

bi ndenv(env)

clones the function(aka closure) and bind the enviroment object to it(table,class or instance). thet hi s
parameter of the newly create function will always be set to env. Note that the created function holds a
weak reference to its environment object so cannot be used to control itslifetime.

i nstance()
returns a new instance of the class. this function does not invoke the instance constructor. The construct-
or must be explicitly called(eg. class inst.constructor(class _inst)).

getattri but es(nenber nane)
returns the attributes of the specified member. if the parameter member is null the function returns the
classlevel attributes.

getattributes(nmenbernane, attr)
sets the attribute of the specified member and returns the previous attribute value. if the parameter mem-
ber is null the function setsthe class level attributes.

rawi n(key)
returns true if the slot *key’ exists. the function has the same eddect as the operator 'in' but does not em-
ploy delegation.

weakr ef ()
returns aweak reference to the object.

tostring()
returns the string "(class : pointer)".

Class Instance

get cl ass()
returns the class that created the instance.

raw n(key)
returns true if the slot *key’ exists. the function has the same eddect as the operator 'in' but does not em-
ploy delegation.

weakr ef ()
returns aweak reference to the object.

43

The language

tostring()
tries to invoke the _tostring metamethod, if failed. returns " (insatnce : pointer)”.

Generator

get status()
returns the status of the generator as string : “running”, " dead” or " suspended”.

weakr ef ()
returns aweak reference to the object.

tostring()
returns the string " (generator : pointer)”.

Thread

cal I (...)
starts the thread with the specified parameters

wakeup([wakeupval])
wakes up a suspended thread, accepts a optional parameter that will be used as return value for the func-
tion that suspended the thread(usually suspend())

get stat us()
returns the status of the thread ("idl€","running"," suspended")

weakr ef ()
returns aweak reference to the object.

tostring()
returns the string " (thread : pointer)".

Weak Reference

ref()
returns the object that the weak reference is pointing at, null if the object that was point at was des-
troyed.

weakr ef ()
returns aweak reference to the object.

tostring()
returns the string " (weakref : pointer)”.

	Table of Contents
	Chapter 1. The language
	Lexical structure
	Identifiers
	Keywords
	Operators
	Other tokens
	Literals
	Comments

	Values and Data types
	Integer
	Float
	String
	Null
	Bool
	Table
	Array
	Function
	Class
	Class instance
	Generator
	Userdata
	Thread
	Weak References

	Execution Context
	Variables

	Statements
	Block
	Control Flow Statements
	true and false
	if/else
	while
	do/while
	switch

	Loops
	for
	foreach

	break
	continue
	return
	yield
	Local variables declaration
	Function declaration
	Class declaration
	try/catch
	throw
	const
	enum
	expression statement

	Expressions
	Assignment(=) & new slot(<-)
	Operators
	?: Operator
	Arithmetic
	Relational
	Logical
	in operator
	instanceof operator
	typeof operator
	comma operator
	Bitwise Operators
	Operators precedence

	Table constructor
	delegate
	clone
	Array constructor

	Tables
	Construction
	Slot creation
	Slot deletion

	Arrays
	Functions
	Function declaration
	Default Paramaters
	Function with variable number of paramaters

	Function calls
	Binding an environment to a function
	Free variables
	Tail recursion

	Classes
	Class declaration
	Static variables
	Class attributes

	Class instances
	Inheritance
	Metamethods

	Generators
	Constants & Enumerations
	Constants
	Enumerations
	Implementation notes

	Threads
	Using threads

	Weak References
	Handling weak references explicitly

	Delegation
	Metamethods
	_set
	_get
	_newslot
	_delslot
	_add
	_sub
	_mul
	_div
	_modulo
	_unm
	_typeof
	_cmp
	_call
	_cloned
	_nexti
	_tostring
	_inherited
	_newmember

	Built-in functions
	Global symbols
	Default delegates
	Integer
	Float
	Bool
	String
	Table
	Array
	Function
	Class
	Class Instance
	Generator
	Thread
	Weak Reference

