
Table of Contents

1. The language .. 2
Lexical structure ... 2

Identifiers .. 2
Keywords .. 2
Operators ... 2
Other tokens ... 2
Literals ... 2
Comments ... 3

Values and Data types .. 3
Integer .. 4
Float ... 4
String .. 4
Null .. 4
Bool ... 5
Table .. 5
Array .. 5
Function .. 5
Class .. 5
Class instance ... 5
Generator .. 6
Userdata .. 6
Thread .. 6
Weak References .. 6

Execution Context ... 6
Variables ... 6

Statements ... 8
Block .. 8
Control Flow Statements .. 8
Loops ... 9
break .. 10
continue .. 10
return .. 10
yield ... 11
Local variables declaration .. 11
Function declaration .. 11
Class declaration ... 11
try/catch .. 11
throw .. 12
const ... 12
enum .. 12
expression statement .. 12

Expressions .. 12
Assignment(=) & new slot(<-) ... 12
Operators ... 13
Table constructor .. 15
delegate ... 16
clone .. 16
Array constructor .. 17

Tables ... 17
Construction .. 17
Slot creation ... 17
Slot deletion ... 18

iv

For Evaluation Only.
Copyright (c) by Foxit Software Company, 2004 - 2007
Edited by Foxit PDF Editor

Arrays ... 18
Functions ... 18

Function declaration .. 18
Function calls ... 20
Binding an environment to a function .. 20
Free variables ... 21
Tail recursion ... 21

Classes .. 21
Class declaration ... 21
Class instances ... 24
Inheritance ... 25
Metamethods .. 27

Generators ... 27
Constants & Enumerations .. 28

Constants ... 28
Enumerations ... 29
Implementation notes ... 29

Threads ... 30
Using threads ... 30

Weak References .. 32
Delegation ... 33
Metamethods .. 33

_set .. 34
_get .. 34
_newslot .. 34
_delslot ... 34
_add ... 35
_sub ... 35
_mul ... 35
_div .. 35
_modulo .. 35
_unm .. 35
_typeof ... 35
_cmp .. 35
_call ... 36
_cloned ... 36
_nexti ... 36
_tostring .. 36
_inherited .. 36
_newmember .. 36

Built-in functions .. 37
Global symbols ... 37
Default delegates .. 38

Squirrel 2.2 Reference Manual

v

For Evaluation Only.
Copyright (c) by Foxit Software Company, 2004 - 2007
Edited by Foxit PDF Editor

Chapter 1. The language
This part of the document describes the syntax and semantics of the language.

Lexical structure
Identifiers

Identifiers start with a alphabetic character or '_' followed by any number of alphabetic characters, '_' or
digits ([0-9]). Squirrel is a case sensitive language, this means that the lowercase and uppercase repres-
entation of the same alphabetic character are considered different characters. For instance "foo", "Foo"
and "fOo" will be treated as 3 distinct identifiers.

id:= [a-zA-Z_]+[a-zA-Z_0-9]*

Keywords
The following words are reserved words by the language and cannot be used as identifiers:

break case catch class clone continue

const default delegate delete else enum

extends for function if in local

null resume return switch this throw

try typeof while parent yield constructor

vargc vargv instanceof true false static

Keywords are covered in detail later in this document.

Operators
Squirrel recognizes the following operators:

! != || == && <= => >

+ += - -= / /= * *=

% %= ++ -- <- = & ^

| ~ >> << >>>

Other tokens
Other used tokens are:

{ } [] . : :: ' ; " @"

Literals

2

For Evaluation Only.
Copyright (c) by Foxit Software Company, 2004 - 2007
Edited by Foxit PDF Editor

Squirrel accepts integer numbers, floating point numbers and stings literals.

34 Integer number(base 10)

0xFF00A120 Integer number(base 16)

0753 Integer number(base 8)

'a' Integer number

1.52 Floating point number

1.e2 Floating point number

1.e-2 Floating point number

"I'm a string" String

@"I'm a verbatim string" String

@" I'm a multiline verbatim string
"

String

IntegerLiteral := [0-9]+ | '0x' [0-9A-Fa-f]+ | ''' [.]+ ''' | 0[0-7]+
FloatLiteral := [0-9]+ '.' [0-9]+
FloatLiteral := [0-9]+ '.' 'e'|'E' '+'|'-' [0-9]+
StringLiteral:= '"'[.]* '"'
VerbatimStringLiteral:= '@''"'[.]* '"'

Comments
A comment is text that the compiler ignores but that is useful for programmers. Comments are normally
used to embed annotations in the code. The compiler treats them as white space.

The /* (slash, asterisk) characters, followed by any sequence of characters (including new lines), fol-
lowed by the */ characters. This syntax is the same as ANSI C.

/*
this is
a multiline comment.
this lines will be ignored by the compiler
*/

The // (two slashes) characters, followed by any sequence of characters. A new line not immediately
preceded by a backslash terminates this form of comment. It is commonly called a “single-line
comment.”

//this is a single line comment. this line will be ignored by the compiler

Values and Data types
Squirrel is a dynamically typed language so variables do not have a type, although they refer to a value

The language

3

that does have a type. Squirrel basic types are integer, float, string, null, table, array, function, generator,
class, instance, bool, thread and userdata.

Integer
An Integer represents a 32 bits (or better) signed number.

local a = 123 //decimal
local b = 0x0012 //hexadecimal
local c = 075 //octal
local d = 'w' //char code

Float
A float represents a 32 bits (or better) floating point number.

local a=1.0
local b=0.234

String
Strings are an immutable sequence of characters to modify a string is necessary create a new one.

Squirrel's strings, behave like C or C++, are delimited by quotation marks(") and can contain escape se-
quences(\t,\a,\b,\n,\r,\v,\f,\\,\",\',\0,\xhhhh).

Verbatim string literals begin with @" and end with the matching quote. Verbatim string literals also can
extend over a line break. If they do, they include any white space characters between the quotes:

local a = "I'm a wonderful string\n"
// has a newline at the end of the string
local x = @"I'm a verbatim string\n"
// the \n is copied in the string same as \\n in a regular string "I'm a verbatim string\n"

The only exception to the "no escape sequence" rule for verbatim string literals is that you can put a
double quotation mark inside a verbatim string by doubling it:

local multiline = @"
this is a multiline string
it will ""embed"" all the new line
characters

"

Null
The null value is a primitive value that represents the null, empty, or non-existent reference. The type
Null has exactly one value, called null.

The language

4

local a=null

Bool
the bool data type can have only two. They are the literals true and false. A bool value expresses the
validity of a condition (tells whether the condition is true or false).

local a = true;

Table
Tables are associative containers implemented as pairs of key/value (called a slot).

local t={}
local test=
{

a=10
b=function(a) { return a+1; }

}

Array
Arrays are simple sequence of objects, their size is dynamic and their index starts always from 0.

local a=["I'm","an","array"]
local b=[null]
b[0]=a[2];

Function
Functions are similar to those in other C-like languages and to most programming languages in general,
however there are a few key differences (see below).

Class
Classes are associative containers implemented as pairs of key/value. Classes are created through a 'class
expression' or a 'class statement'. class members can be inherited from another class object at creation
time. After creation members can be added until a instance of the class is created.

Class instance
Class instances are created by calling a class object. Instances, as tables, are implemented as pair
of key/value. Instances members cannot be dyncamically added or removed however the value of the
members can be changed.

The language

5

Generator
Generators are functions that can be suspended with the statement 'yield' and resumed later (see Generat-
ors).

Userdata
Userdata objects are blobs of memory(or pointers) defined by the host application but stored into Squir-
rel variables (See Userdata and UserPointers).

Thread
Threads are objects that represents a cooperative thread of execution, also known as coroutines.

Weak References
Weak References are objects that point to another(non scalar) object but do not own a strong reference
to it. (See Weak References).

Execution Context
The execution context is the union of the function stack frame and the function environment object(this).
The stack frame is the portion of stack where the local variables declared in its body are stored. The en-
vironment object is an implicit parameter that is automatically passed by the function caller (see Func-
tions). During the execution, the body of a function can only transparently refer to his execution context.
This mean that a single identifier can refer either to a local variable or to an environment object slot;
Global variables require a special syntax (see Variables). The environment object can be explicitly ac-
cessed by the keyword this.

Variables
There are two types of variables in Squirrel, local variables and tables/arrays slots. Because global vari-
ables are stored in a table, they are table slots.

A single identifier refers to a local variable or a slot in the environment object.

derefexp := id;

_table["foo"]
_array[10]

with tables we can also use the '.' syntax

derefexp := exp '.' id

_table.foo

Squirrel first checks if an identifier is a local variable (function arguments are local variables) if not it
checks if it is a member of the environment object (this).

For instance:

The language

6

function testy(arg)
{

local a=10;
print(a);
return arg;

}

will access to local variable 'a' and prints 10.

function testy(arg)
{

local a=10;
return arg+foo;

}

in this case 'foo' will be equivalent to 'this.foo' or this["foo"].

Global variables are stored in a table called the root table. Usually in the global scope the environment
object is the root table, but to explicitly access the global table from another scope, the slot name must
be prefixed with '::' (::foo).

exp:= '::' id

For instance:

function testy(arg)
{

local a=10;
return arg+::foo;

}

accesses the global variable 'foo'.

However (since squirrel 2.0) if a variable is not local and is not found in the 'this' object Squirrel will
search it in the root table.

function test() {
foo = 10;

}

is equivalent to write

function test() {
if("foo" in this) {

this.foo = 10;
}else {

::foo = 10;
}

}

The language

7

Statements
A squirrel program is a simple sequence of statements.

stats := stat [';'|'\n'] stats

Statements in squirrel are comparable to the C-Family languages (C/C++, Java, C# etc...): assignment,
function calls, program flow control structures etc.. plus some custom statement like yield, table and ar-
ray constructors (All those will be covered in detail later in this document). Statements can be separated
with a new line or ';' (or with the keywords case or default if inside a switch/case statement), both sym-
bols are not required if the statement is followed by '}'.

Block
stat := '{' stats '}'

A sequence of statements delimited by curly brackets ({ }) is called block; a block is a statement itself.

Control Flow Statements
squirrel implements the most common control flow statements: if, while, do-while,
switch-case, for, foreach.

true and false

Squirrel has a boolean type(bool) however like C++ it considers null, 0(integer) and 0.0(float) as false,
any other value is considered true.

if/else

stat:= 'if' '(' exp ')' stat ['else' stat]

Conditionally execute a statement depending on the result of an expression.

if(a>b)
a=b;

else
b=a;

////
if(a==10)
{

b=a+b;
return a;

}

while

stat:= 'while' '(' exp ')' stat

Executes a statement until the condition is false.

The language

8

function testy(n)
{

local a=0;
while(a<n) a+=1;

while(1)
{
if(a<0) break;
a-=1;

}
}

do/while

stat:= 'do' stat 'while' '(' expression ')'

Executes a statement once, and then repeats execution of the statement until a condition expression eval-
uates to false.

local a=0;
do
{

print(a+"\n");
a+=1;

} while(a>100)

switch

stat := 'switch' ''(exp ')' '{'
'case' case_exp ':'

stats
['default' ':'

stats]
'}'

Is a control statement allows multiple selections of code by passing control to one of the case statements
within its body. The control is transferred to the case label whose case_exp matches with exp if none of
the case match will jump to the default label (if present). A switch statement can contain any number if
case instances, if 2 case have the same expression result the first one will be taken in account first. The
default label is only allowed once and must be the last one. A break statement will jump outside the
switch block.

Loops

for

stat:= 'for' '(' [initexp] ';' [condexp] ';' [incexp] ')' statement

The language

9

Executes a statement as long as a condition is different than false.

for(local a=0;a<10;a+=1)
print(a+"\n");

//or
glob <- null
for(glob=0;glob<10;glob+=1){

print(glob+"\n");
}
//or
for(;;){

print(loops forever+"\n");
}

foreach

'foreach' '(' [index_id','] value_id 'in' exp ')' stat

Executes a statement for every element contained in an array, table, class, string or generator. If exp is a
generator it will be resumed every iteration as long as it is alive; the value will be the result of 'resume'
and the index the sequence number of the iteration starting from 0.

local a=[10,23,33,41,589,56]
foreach(idx,val in a)

print("index="+idx+" value="+val+"\n");
//or
foreach(val in a)

print("value="+val+"\n");

break
stat := 'break'

The break statement terminates the execution of a loop (for, foreach, while or do/while) or jumps out of
switch statement;

continue
stat := 'continue'

The continue operator jumps to the next iteration of the loop skipping the execution of the following
statements.

return
stat:= return [exp]

The language

10

The return statement terminates the execution of the current function/generator and optionally returns
the result of an expression. If the expression is omitted the function will return null. If the return state-
ment is used inside a generator, the generator will not be resumable anymore.

yield
stat := yield [exp]

(see Generators).

Local variables declaration

initz := id [= exp][',' initz]
stat := 'local' initz

Local variables can be declared at any point in the program; they exist between their declaration to the
end of the block where they have been declared. EXCEPTION: a local declaration statement is allowed
as first expression in a for loop.

for(local a=0;a<10;a+=1)
print(a);

Function declaration

funcname := id ['::' id]
stat:= 'function' id ['::' id]+ '(' args ')'[':' '(' args ')'] stat

creates a new function.

Class declaration

memberdecl := id '=' exp [';'] | '[' exp ']' '=' exp [';'] | functionstat | 'constructor' functionexp
stat:= 'class' derefexp ['extends' derefexp] '{'

[memberdecl]
'}'

creates a new class.

try/catch
stat:= 'try' stat 'catch' '(' id ')' stat

The try statement encloses a block of code in which an exceptional condition can occur, such as a
runtime error or a throw statement. The catch clause provides the exceptionhandling code. When a catch

The language

11

clause catches an exception, its id is bound to that exception.

throw
stat:= 'throw' exp

Throws an exception. Any value can be thrown.

const
stat:= 'const' id '=' 'Integer | Float | StringLiteral

Declares a constant (see Constants & Enumerations).

enum

enumerations := (‘id’ '=' Integer | Float | StringLiteral) [‘,’]
stat:= 'enum' id '{' enumerations '}'

Declares an enumeration (see Constants & Enumerations).

expression statement
stat := exp

In Squirrel every expression is also allowed as statement, if so, the result of the expression is thrown
away.

Expressions
Assignment(=) & new slot(<-)

exp := derefexp '=' exp
exp:= derefexp '<-' exp

squirrel implements 2 kind of assignment: the normal assignment(=)

a=10;

and the "new slot" assignment.

a <- 10;

The language

12

The new slot expression allows to add a new slot into a table(see Tables). If the slot already exists in the
table it behaves like a normal assignment.

Operators

?: Operator

exp := exp_cond '?' exp1 ':' exp2

conditionally evaluate an expression depending on the result of an expression.

Arithmetic

exp:= 'exp' op 'exp'

Squirrel supports the standard arithmetic operators +, -, *, / and %. Other than that is also supports com-
pact operators (+=,-=,*=,/=,%=) and increment and decrement operators(++ and --);

a+=2;
//is the same as writing
a=a+2;
x++
//is the same as writing
x=x+1

All operators work normally with integers and floats; if one operand is an integer and one is a float the
result of the expression will be float. The + operator has a special behavior with strings; if one of the op-
erands is a string the operator + will try to convert the other operand to string as well and concatenate
both together. For instances and tables, _tostring is invoked.

Relational

exp:= 'exp' op 'exp'

Relational operators in Squirrel are : == < <= > >= !=

These operators return null if the expression is false and a value different than null if the expression is
true. Internally the VM uses the integer 1 as true but this could change in the future.

Logical

exp := exp op exp
exp := '!' exp

Logical operators in Squirrel are : && || !

The operator && (logical and) returns null if its first argument is null, otherwise returns its second argu-
ment. The operator || (logical or) returns its first argument if is different than null, otherwise returns the
second argument.

The language

13

The '!' operator will return null if the given value to negate was different than null, or a value different
than null if the given value was null.

in operator

exp:= keyexp 'in' tableexp

Tests the existence of a slot in a table. Returns a value different than null if keyexp is a valid key in
tableexp

local t=
{

foo="I'm foo",
[123]="I'm not foo"

}

if("foo" in t) dostuff("yep");
if(123 in t) dostuff();

instanceof operator

exp:= instanceexp 'instanceof' classexp

Tests if a class instance is an instance of a certain class. Returns a value different than null if instanceexp
is an instance of classexp.

typeof operator

exp:= 'typeof' exp

returns the type name of a value as string.

local a={},b="squirrel"
print(typeof a); //will print "table"
print(typeof b); //will print "string"

comma operator

exp:= exp ',' exp

The comma operator evaluates two expression left to right, the result of the operator is the result of the
expression on the right; the result of the left expression is discarded.

local j=0,k=0;
for(local i=0; i<10; i++ , j++)
{

k = i + j;
}

The language

14

local a,k;
a = (k=1,k+2); //a becomes 3

Bitwise Operators

exp:= 'exp' op 'exp'
exp := '~' exp

Squirrel supports the standard c-like bit wise operators &,|,^,~,<<,>> plus the unsigned right shift oper-
ator >>>. The unsigned right shift works exactly like the normal right shift operator(>>) except for treat-
ing the left operand as an unsigned integer, so is not affected by the sign. Those operators only work on
integers values, passing of any other operand type to these operators will cause an exception.

Operators precedence

-,~,!,typeof ,++,-- highest

/, *, % ...

+, -

<<, >>,>>>

<, <=, >, >=

==, !=

&

^

|

&&, in

||

?:

+=,=,-= ...

,(comma operator) lowest

Table constructor

tslots := (‘id’ ‘=’ exp | ‘[‘ exp ‘]’ ‘=’ exp) [‘,’]
exp := ‘{’ [tslots] ‘}’

Creates a new table.

local a={} //create an empty table

A table constructor can also contain slots declaration; With the syntax:

The language

15

id = exp [',']

a new slot with id as key and exp as value is created

local a=
{

slot1="I'm the slot value"
}

An alternative syntax can be

'[' exp1 ']' = exp2 [',']

A new slot with exp1 as key and exp2 as value is created

local a=
{

[1]="I'm the value"
}

both syntaxes can be mixed

local table=
{

a=10,
b="string",
[10]={},
function bau(a,b)
{

return a+b;
}

}

The comma between slots is optional.

delegate
exp:= ‘delegate’ parentexp : exp

Sets the parent of a table. The result of parentexp is set as parent of the result of exp, the result of the ex-
pression is exp (see Delegation).

clone
exp:= ‘clone’ exp

Clone performs shallow copy of a table, array or class instance (copies all slots in the new object
without recursion). If the source table has a delegate, the same delegate will be assigned as delegate (not

The language

16

copied) to the new table (see Delegation).

After the new object is ready the “_cloned” meta method is called (see Metamethods).

When a class instance is cloned the constructor is not invoked(initializations must rely on _cloned in-
stead

Array constructor
exp := ‘[’ [explist] ‘]’

Creates a new array.

a <- [] //creates an empty array

arrays can be initialized with values during the construction

a <- [1,"string!",[],{}] //creates an array with 4 elements

Tables
Tables are associative containers implemented as pairs of key/value (called slot); values can be any pos-
sible type and keys any type except 'null'. Tables are squirrel's skeleton, delegation and many other fea-
tures are all implemented through this type; even the environment, where global variables are stored, is a
table (known as root table).

Construction
Tables are created through the table constructor (see Table constructor)

Slot creation
Adding a new slot in a existing table is done through the "new slot" operator '<-'; this operator behaves
like a normal assignment except that if the slot does not exists it will be created.

local a={}

The following line will cause an exception because the slot named 'newslot' does not exist in the table
‘a’

a.newslot = 1234

this will succeed:

The language

17

a.newslot <- 1234;

or

a[1] <- "I'm the value of the new slot";

Slot deletion
exp:= delete derefexp

Deletion of a slot is done through the keyword delete; the result of this expression will be the value of
the deleted slot.

a <- {
test1=1234
deleteme="now"

}

delete a.test1
print(delete a.deleteme); //this will print the string "now"

Arrays
An array is a sequence of values indexed by a integer number from 0 to the size of the array minus 1.
Arrays elements can be obtained through their index.

local a=[“I’m a string”, 123]
print(typeof a[0]) //prints "string"
print(typeof a[1]) //prints "integer"

Resizing, insertion, deletion of arrays and arrays elements is done through a set of standard functions
(see built-in functions).

Functions
Functions are first class values like integer or strings and can be stored in table slots, local variables, ar-
rays and passed as function parameters. Functions can be implemented in Squirrel or in a native lan-
guage with calling conventions compatible with ANSI C.

Function declaration
Functions are declared through the function expression

local a= function(a,b,c) {return a+b-c;}

The language

18

or with the syntactic sugar

function ciao(a,b,c)
{

return a+b-c;
}

that is equivalent to

this.ciao <- function(a,b)
{

return a+b-c;
}

is also possible to declare something like

T <- {}
function T::ciao(a,b,c)
{

return a+b-c;
}

//that is equivalent to write

T.ciao <- function(a,b,c)
{

return a+b-c;
}

//or

T <- {
function ciao(a,b,c)
{

return a+b-c;
}

}

Default Paramaters
Squirrel's functions can have default parameters.

A function with default parameters is declared as follows:

function test(a,b,c = 10, d = 20)
{

....
}

when the function test is invoked and the parameter c or d are not specified, the VM autometically as-

The language

19

signs the default value to the unspecified parameter. A default parameter can be any valid squirrel ex-
pression. The expression is evaluated at runtime.

Function with variable number of paramaters
Squirrel's functions can have variable number of parameters(varargs functions).

A vararg function is declared by adding three dots (`...´) at the end of its parameter list.

When the function is called all the extra parameters will be accessible through the pseudo array called
vargv.

vargv can only indexed with a numeric object(float or integer). The number of parameter contained in
vargv is stored in the pseudo variable vargc.
Note that vargv is not a real object, it can't be assigned or passed as parameter.

function test(a,b,...)
{

for(local i = 0; i< vargc; i++)
{

::print("varparam "+i+" = "+vargv[i]+"\n");
}

}

test("goes in a","goes in b",0,1,2,3,4,5,6,7,8);

Function calls
exp:= derefexp ‘(‘ explist ‘)’

The expression is evaluated in this order: derefexp after the explist (arguments) and at the end the call.

Every function call in Squirrel passes the environment object ‘this’ as hidden parameter to the called
function. The ‘this’ parameter is the object where the function was indexed from.

If we call a function with this syntax

table.foo(a)

the environment object passed to foo will be ‘table’

foo(x,y) // equivalent to this.foo(x,y)

The environment object will be ‘this’ (the same of the caller function).

Binding an environment to a function
while by default a squirrel function call passes as environment object 'this', the object where the function
was indexed from. However, is also possible to statically bind an evironment to a closure using the built-
in method closure.bindenv(env_obj). The method bindenv() returns a new instance of a clos-
ure with the environment bound to it. When an environment object is bound to a function, every time the

The language

20

function is invoked, its 'this' parameter will always be the previously bound environent. This mechanism
is useful to implement callbacks systems similar to C# delegates.

Note
The closure keeps a weak reference to the bound environmet object, because of this if the ob-
ject is deleted, the next call to the closure will result in a null environment object.

Free variables
Free variables are variables referenced by a function that are not visible in the function scope. In the fol-
lowing example the function foo() declares x, y and testy as free variables.

local x=10,y=20
testy <- “I’m testy”

function foo(a,b):(x,y,testy)
{

::print(testy);
return a+b+x+y;

}

The value of a free variable is frozen and bound to the function when the function is created; the value is
passed to the function as implicit parameter every time is called.

Tail recursion
Tail recursion is a method for partially transforming a recursion in a program into an iteration: it applies
when the recursive calls in a function are the last executed statements in that function (just before the re-
turn). If this happenes the squirrel interpreter collapses the caller stack frame before the recursive call;
because of that very deep recursions are possible without risk of a stack overflow.

function loopy(n)
{

if(n>0){
::print(“n=”+n+”\n”);
return loopy(n-1);

}
}

loopy(1000);

Classes
Squirrel implements a class mechanism similar to languages like Java/C++/etc... however because of its
dynamic nature it differs in several aspects. Classes are first class objects like integer or strings and can
be stored in table slots local variables, arrays and passed as function parameters.

Class declaration
A class object is created through the keyword 'class' . The class object follows the same declaration syn-
tax of a table(see tables) with the only difference of using ';' as optional separator rather than ','.

The language

21

For instance:

class Foo {
//constructor
constructor(a)
{

testy = ["stuff",1,2,3];
}
//member function
function PrintTesty()
{

foreach(i,val in testy)
{

::print("idx = "+i+" = "+val+" \n");
}

}
//property
testy = null;

}

the previous code examples is a syntactic sugar for:

Foo <- class {
//constructor
constructor(a)
{

testy = ["stuff",1,2,3];
testy = a;

}
//member function
function PrintTesty()
{

foreach(i,val in testy)
{

::print("idx = "+i+" = "+val+" \n");
}

}
//property
testy = null;

}

in order to emulate namespaces, is also possible to declare something like this

//just 2 regular nested tables
FakeNamespace <- {

Utils = {}
}

class FakeNamespace.Utils.SuperClass {
constructor()
{

::print("FakeNamespace.Utils.SuperClass")
}
function DoSomething()
{

::print("DoSomething()")
}

}

The language

22

function FakeNamespace::Utils::SuperClass::DoSomethingElse()
{

::print("FakeNamespace::Utils::SuperClass::DoSomethingElse()")
}

local testy = FakeNamespace.Utils.SuperClass();
testy.DoSomething();
testy.DoSomethingElse();

After its declaration, methods or properties can be added or modified by following the same rules that
apply to a table(operator <- and =).

//adds a new property
Foo.stuff <- 10;

//modifies the default value of an existing property
Foo.testy = "I'm a string";

//adds a new method
function Foo::DoSomething(a,b)
{

return a+b;
}

After a class is instantiated is no longer possible to add new properties or methods to it.

Static variables
Squirrel's classes support static member variables. A static variable shares its value between all instances
of the class. Statics are declared by prefixing the variable declaration with the keyword static; the de-
claration must be in the class body.

Note
Statics are read-only.

class Foo {
constructor()
{

//..stuff
}
name = "normal variable";
//static variable
static classname = "The class name is foo";

};

Class attributes
Classes allow to associate attributes to it's members. Attributes are a form of metadata that can be used
to store application specific informations, like documentations strings, properties for IDEs, code gener-
ators etc... Class attributes are declared in the class body by preceding the member declaration and are
delimited by the symbol </ and />. Here an example:

class Foo </ test = "I'm a class level attribute" />{
</ test = "freakin attribute" /> //attributes of PrintTesty
function PrintTesty()
{

foreach(i,val in testy)
{

::print("idx = "+i+" = "+val+" \n");

The language

23

}
}
</ flippy = 10 , second = [1,2,3] /> //attributes of testy
testy = null;

}

Attributes are, matter of fact, a table. Squirrel uses </ /> syntax instead of curly brackets {} for the at-
tribute declaration to increase readability.

This means that all rules that apply to tables apply to attributes.

Attributes can be retrieved through the built-in function clas-
sobj.getattributes(membername) (see built-in functions). and can be modified/added
through the built-in function classobj.setattributes(membername,val).

the following code iterates through the attributes of all Foo members.

foreach(member,val in Foo)
{

::print(member+"\n");
local attr;
if((attr = Foo.getattributes(member)) != null) {

foreach(i,v in attr)
{

::print("\t"+i+" = "+(typeof v)+"\n");
}

}
else {

::print("\t<no attributes>\n")
}

}

Class instances
The class objects inherits several of the table's feature with the difference that multiple instances of the
same class can be created. A class instance is an object that share the same structure of the table that cre-
ated it but holds is own values. Class instantiation uses function notation. A class instance is created by
calling a class object. Can be useful to imagine a class like a function that returns a class instance.

//creates a new instance of Foo
local inst = Foo();

When a class instance is created its member are initialized with the same value specified in the class de-
claration.

When a class defines a method called 'constructor', the class instantiation operation will automatically
invoke it for the newly created instance. The constructor method can have parameters, this will impact
on the number of parameters that the instantiation operation will require. Constructors as normal func-
tions can have variable number of parameters (using the parameter ...).

class Rect {
constructor(w,h)
{

width = w;
height = h;

}

The language

24

x = 0;
y = 0;
width = null;
height = null;

}

//Rect's constructor has 2 parameters so the class has to be 'called'
//with 2 parameters
local rc = Rect(100,100);

After an instance is created, its properties can be set or fetched following the same rules that apply to
tables. Methods cannot be set.

Instance members cannot be removed.

The class object that created a certain instance can be retrieved through the built-in function in-
stance.getclass()(see built-in functions)
The operator instanceof tests if a class instance is an instance of a certain class.

local rc = Rect(100,100);
if(rc instanceof ::Rect) {

::print("It's a rect");
}
else {

::print("It isn't a rect");
}

Inheritance
Squirrel's classes support single inheritance by adding the keyword extends, followed by an expres-
sion, in the class declaration. The syntax for a derived class is the following:

class SuperFoo extends Foo {
function DoSomething() {

::print("I'm doing something");
}

}

When a derived class is declared, Squirrel first copies all base's members in the new class then proceeds
with evaluating the rest of the declaration.

A derived class inherit all members and properties of it's base, if the derived class overrides a base func-
tion the base implementation is shadowed. It's possible to access a overridden method of the base class
by fetching the method from the base class object.

Here an example:

class Foo {
function DoSomething() {

::print("I'm the base");
}

};

class SuperFoo extends Foo {

The language

25

//overridden method
function DoSomething() {

//calls the base method
::Foo.DoSomething();
::print("I'm doing something");

}
}

Same rule apply to the constructor. The constructor is a regular function (apart from being automatically
invoked on contruction).

class Base {
constructor()
{

::print("Base constructor\n");
}

}

class Child extends Base {
constructor()
{

::Base.constructor();
::print("Child constructor\n");

}
}

local test = Child();

The base class of a derived class can be retrieved through the keyword parent. parent is a 'pseudo
slot'. The parent slot cannot be set.

local thebaseclass = SuperFoo.parent;

Note that because methods do not have special protection policies when calling methods of the same ob-
jects, a method of a base class that calls a method of the same class can end up calling a overridden
method of the derived class.

class Foo {
function DoSomething() {

::print("I'm the base");
}
function DoIt()
{

DoSomething();
}

};

class SuperFoo extends Foo {
//overridden method
function DoSomething() {

::print("I'm the derived");

}
function DoIt() {

::Foo.DoIt();
}

}

The language

26

//creates a new instance of SuperFoo
local inst = SuperFoo();

//prints "I'm the derived"
inst.DoIt();

Metamethods
Class instances allow the customization of certain aspects of the their semantics through metameth-
ods(see Metamethods). For C++ programmers: "metamethods behave roughly like overloaded operat-
ors". The metamethods supported by classes are _add, _sub, _mul, _div, _unm,
_modulo, _set, _get, _typeof, _nexti, _cmp, _call, _delslot,_tostring

Class objects instead support only 2 metamethods : _newmember and _inherited
the following example show how to create a class that implements the metamethod _add.

class Vector3 {
constructor(...)
{

if(vargc >= 3) {
x = vargv[0];
y = vargv[1];
z = vargv[2];

}
}
function _add(other)
{

return ::Vector3(x+other.x,y+other.y,z+other.z);
}

x = 0;
y = 0;
z = 0;

}

local v0 = Vector3(1,2,3)
local v1 = Vector3(11,12,13)
local v2 = v0 + v1;
::print(v2.x+","+v2.y+","+v2.z+"\n");

Since version 2.1, classes support 2 metamethods _inherited and _newmember. _inherited is
invoked when a class inherits from the one that implements _inherited. _newmember is invoked
for each member that is added to the class(at declaration time).

Generators
A function that contains a yield statement is called ‘generator function’. When a generator function is
called, it does not execute the function body, instead it returns a new suspended generator. The returned
generator can be resumed through the resume statement while it is alive. The yield keyword, suspends
the execution of a generator and optionally returns the result of an expression to the function that re-
sumed the generator. The generator dies when it returns, this can happen through an explicit return state-
ment or by exiting the function body; If an unhandled exception (or runtime error) occurs while a gener-

The language

27

ator is running, the generator will automatically die. A dead generator cannot be resumed anymore.

function geny(n)
{

for(local i=0;i<n;i+=1)
yield i;

return null;
}

local gtor=geny(10);
local x;
while(x=resume gtor) print(x+”\n”);

the output of this program will be

0
1
2
3
4
5
6
7
8
9

generators can also be iterated using the foreach statement. When a generator is evaluated by foreach,
the generator will be resumed for each iteration until it returns. The value returned by the return state-
ment will be ignored.

Constants & Enumerations
Squirrel allows to bind constant values to an identifier that will be evaluated compile-time. This is
archieved though constants and enumarations.

Constants

Constants bind a specific value to an indentifier. Constants are similar to global values, except that they
are evaluated compile time and their value cannot be changed.

constants values can only be integers, floats or string literals. No expression are allowed. are declared
with the following syntax.

const foobar = 100;
const floatbar = 1.2;
const stringbar = "I'm a contant string";

constants are always globally scoped, from the moment they are declared, any following code can refer-
ence them. Constants will shadow any global slot with the same name(the global slot will remain visible

The language

28

by using the :: syntax).

local x = foobar * 2;

Enumerations

As Constants, Enumerations bind a specific value to a name. Enumerations are also evaluated compile
time and their value cannot be changed.

An enum declaration introduces a new enumeration into the program. Enumerations values can only be
integers, floats or string literals. No expression are allowed.

enum Stuff {
first, //this will be 0
second, //this will be 1
third //this will be 2

}

or

enum Stuff {
first = 10
second = "string"
third = 1.2

}

An enum value is accessed in a manner that's similar to accessing a static class member. The name of
the member must be qualified with the name of the enumeration, for example Stuff.second. Enu-
merations will shadow any global slot with the same name(the global slot will remain visible by using
the :: syntax).

local x = Stuff.first * 2;

Implementation notes
Enumerations and Contants are a compile-time feature. Only integers, string and floats can be declared
as const/enum; No expressions are allowed(because they would have to be evaluated compile time).
When a const or an enum is declared, it is added compile time to the consttable. This table is stored
in the VM shared state and is shared by the VM and all its threads. The consttable is a regular squir-

The language

29

rel table; In the same way as the roottable it can be modified runtime. You can access the const-
table through the built-in function getconsttable() and also change it through the built-in func-
tion setconsttable()

here some example:

//create a constant
getconsttable()["something"] <- 10"
//create an enumeration
getconsttable()["somethingelse"] <- { a = "10", c = "20", d = "200"};
//deletes the constant
delete getconsttable()["something"]
//deletes the enumeration
delete getconsttable()["somethingelse"]

This system allows to procedurally declare constants and enumerations, it is also possible to assign any
squirrel type to a constant/enumeration(function,classes etc...). However this will make serialization of a
code chunk impossible.

Threads
Squirrel supports cooperative threads(also known as coroutines). A cooperative thread is a subroutine
that can suspended in mid-execution and provide a value to the caller without returning program flow,
then its execution can be resumed later from the same point where it was suspended. At first look a
Squirrel thread can be confused with a generator, in fact their behaviour is quite similar. However while
a generator runs in the caller stack and can suspend only the local routine stack a thread has its own exe-
cution stack, global table and error handler; This allows a thread to suspend nested calls and have it's
own error policies.

Using threads

Threads are created through the built-in function 'newthread(func)'; this function gets as parameter a
squirrel function and bind it to the new thread objecs(will be the thread body). The returned thread ob-
ject is initially in 'idle' state. the thread can be started with the function 'threadobj.call()'; the parameters
passed to 'call' are passed to the thread function.

A thread can be be suspended calling the function suspend(), when this happens the function that
wokeup(or started) the thread returns (If a parametrer is passed to suspend() it will be the return value of
the wakeup function , if no parameter is passed the return value will be null). A suspended thread can be
resumed calling the funtion 'threadobj.wakeup', when this happens the function that suspended the
thread will return(if a parameter is passed to wakeup it will be the return value of the suspend function,
if no parameter is passed the return value will be null).

A thread terminates when its main function returns or when an unhandled exception occurs during its
execution.

function coroutine_test(a,b)
{

::print(a+" "+b+"\n");
local ret = ::suspend("suspend 1");
::print("the coroutine says "+ret+"\n");
ret = ::suspend("suspend 2");
::print("the coroutine says "+ret+"\n");
ret = ::suspend("suspend 3");

The language

30

::print("the coroutine says "+ret+"\n");
return "I'm done"

}

local coro = ::newthread(coroutine_test);

local susparam = coro.call("test","coroutine"); //starts the coroutine

local i = 1;
do
{

::print("suspend passed ("+susparam+")\n")
susparam = coro.wakeup("ciao "+i);
++i;

}while(coro.getstatus()=="suspended")

::print("return passed ("+susparam+")\n")

the result of this program will be

test coroutine
suspend passed (suspend 1)
the coroutine says ciao 1
suspend passed (suspend 2)
the coroutine says ciao 2
suspend passed (suspend 3)
the coroutine says ciao 3
return passed (I'm done).

the following is an interesting example of how threads and tail recursion can be combined.

function state1()
{

::suspend("state1");
return state2(); //tail call

}

function state2()
{

::suspend("state2");
return state3(); //tail call

}

function state3()
{

::suspend("state3");
return state1(); //tail call

}

local statethread = ::newthread(state1)

::print(statethread.call()+"\n");

for(local i = 0; i < 10000; i++)
::print(statethread.wakeup()+"\n");

The language

31

Weak References
The weak references allows the programmers to create references to objects without influencing the life-
time of the object itself. In squirrel Weak references are first-class objects created through the built-in
method obj.weakref(). All types except null implement the weakref() method; however in bools,integers
and float the method simply returns the object itself(this because this types are always passed by value).
When a weak references is assigned to a container (table slot,array,class or instance) is treated differ-
ently than other objects; When a container slot that hold a weak reference is fetched, it always returns
the value pointed by the weak reference instead of the weak reference object. This allow the program-
mer to ignore the fact that the value handled is weak. When the object pointed by weak reference is des-
troyed, the weak reference is automatically set to null.

local t = {}
local a = ["first","second","third"]
//creates a weakref to the array and assigns it to a table slot
t.thearray = a.weakref();

The table slot 'thearray' contains a weak reference to an array. The following line prints "first", because
tables(and all other containers) always return the object pointed by a weak ref

print(t.thearray[0]);

the only strong reference to the array is owned by the local variable 'a', so because the following line as-
signs a integer to 'a' the array is destroyed.

a = 123;

When an object pointed by a weak ref is destroyed the weak ref is automatically set to null, so the fol-
lowing line will print "null".

::print(typeof(t.thearray))

Handling weak references explicitly
If a weak reference is assigned to a local variable, then is treated as any other value.

local t = {}
local weakobj = t.weakref();

the following line prints "weakref".

::print(typeof(weakobj))

the object pointed by the weakref can be obtained through the built-in method weakref.ref().

The following line prints "table".

The language

32

::print(typeof(weakobj.ref()))

Delegation
Squirrel supports implicit delegation. Every table or userdata can have a parent table (delegate). A par-
ent table is a normal table that allows the definition of special behaviors for his child. When a table (or
userdata) is indexed with a key that doesn’t correspond to one of its slots, the interpreter automatically
delegates the get (or set) operation to its parent.

Entity <- {
}

function Entity::DoStuff()
{

::print(_name);
}

local newentity=delegate Entity : {
_name=”I’m the new entity”

}

newentity.DoStuff(); //prints “I’m the new entity”

The parent of a table can be retreived through keyword parent. parent is a 'pseudo slot'. The par-
ent slot cannot be set, the delegete statement has to be used instead.

local thedelegate = newentity.parent;

Metamethods
Metamethods are a mechanism that allows the customization of certain aspects of the language se-
mantics. Those methods are normal functions placed in a table parent(delegate) or class declaration; Is
possible to change many aspect of a table/class instance behavior by just defining a metamethod. Class
objects(not instances) supports only 2 metamethods _newmember,_inherited.

For example when we use relational operators other than ‘==’ on 2 tables, the VM will check if the table
has a method in his parent called ‘_cmp’ if so it will call it to determine the relation between the tables.

local comparable={
_cmp = function (other)
{

if(name<other.name)return –1;
if(name>other.name)return 1;
return 0;

}
}

local a=delegate comparable : { name="Alberto" };
local b=delegate comparable : { name="Wouter" };

The language

33

if(a>b)
print("a>b")

else
print("b<=a");

for classes the previous code become:

class Comparable {
constructor(n)
{

name = n;
}
function _cmp(other)
{

if(name<other.name) return -1;
if(name>other.name) return 1;
return 0;

}
name = null;

}

local a = Comparable("Alberto");
local b = Comparable("Wouter");

if(a>b)
print("a>b")

else
print("b<=a");

_set
invoked when the index idx is not present in the object or in its delegate chain

function _set(idx,val) //returns val

_get
invoked when the index idx is not present in the object or in its delegate chain

function _get(idx) //return the fetched values

_newslot
invoked when a script tries to add a new slot in a table.

function _newslot(key,value) //returns val

if the slot already exists in the target table the method will not be invoked also if the “new slot” operator
is used.

_delslot

The language

34

invoked when a script deletes a slot from a table.

if the method is invoked squirrel will not try to delete the slot himself

function _delslot(key)

_add
the + operator

function _add(op) //returns this+op

_sub
the – operator (like _add)

_mul
the * operator (like _add)

_div
the / operator (like _add)

_modulo
the % operator (like _add)

_unm
the unary minus operator

function _unm()

_typeof
invoked by the typeof operator on tables ,userdata and class instances

function _typeof() //returns the type of this as string

_cmp
invoked to emulate the < > <= >= operators

function _cmp(other)

returns an integer:

>0 if this > other

The language

35

0 if this == other

<0 if this < other

_call
invoked when a table, userdata or class instance is called

function _call(original_this,params…)

_cloned
invoked when a table or class instance is cloned(in the cloned table)

function _cloned(original)

_nexti
invoked when a userdata or class instance is iterated by a foreach loop

function _nexti(previdx)

if previdx==null it means that it is the first iteration. The function has to return the index of the ‘next’
value.

_tostring
invoked when during string conacatenation or when the print function prints a table, instance or user-
data. The method is also invoked by the sq_tostring() api

function _tostring()

must return a string representation of the object.

_inherited
invoked when a class object inherits from the class implementing _inherited the this contains the
new class.

function _inherited(attributes)

return value is ignored.

_newmember
invoked for each member declared in a class body(at declaration time).

function _newmember(index,value,attributes)

if the function is implemented, members will not be added to the class.

The language

36

Built-in functions
The squirrel virtual machine has a set of built utility functions.

Global symbols

array(size,[fill])
create and returns array of a specified size.if the optional parameter fill is specified its value will be
used to fill the new array's slots. If the fill paramter is omitted null is used instead.

seterrorhandler(func)
sets the runtime error handler

setdebughook(hook_func)
sets the debug hook

enabledebuginfo(enable)
enable/disable the debug line information generation at compile time. enable != null enables . enable ==
null disables.

getroottable()
returns the root table of the VM.

setroottable(table)
sets the root table of the VM.

getconsttable()
returns the const table of the VM.

setconsttable(table)
sets the const table of the VM.

assert(exp)
throws an exception if exp is null

print(x)
prints x in the standard output

compilestring(string,[buffername])
compiles a string containing a squirrel script into a function and returns it

local compiledscript=compilestring("::print(\"ciao\")");
//run the script
compiledscript();

The language

37

collectgarbage()
calls the garbage collector and returns the number of reference cycles found(and deleted)

type(obj)
return the 'raw' type of an object without invoking the metatmethod '_typeof'.

getstackinfos(level)
returns the stack informations of a given call stack level. returns a table formatted as follow:

{
func="DoStuff", //function name

src="test.nut", //source file

line=10, //line number

locals = { //a table containing the local variables

a=10,

testy="I'm a string"
}

}

level = 0 is the current function, level = 1 is the caller and so on. If the stack level doesn't exist the func-
tion returns null.

newthread(threadfunc)
creates a new cooperative thread object(coroutine) and returns it

version
string values describing the version of VM and compiler.

charsize
size in bytes of the internal VM rapresentation for characters(1 for ASCII builds 2 for UNICODE
builds).

intsize
size in bytes of the internal VM rapresentation for integers(4 for 32bits builds 8 for 64bits builds).

Default delegates
Except null and userdata every squirrel object has a default delegate containing a set of functions to ma-
nipulate and retrieve information from the object itself.

Integer

tofloat()
convert the number to float and returns it

The language

38

tostring()
converts the number to string and returns it

tointeger()
returns the value of the integer(dummy function)

tochar()
returns a string containing a single character rapresented by the integer.

weakref()
dummy function, returns the integer itself.

Float

tofloat()
returns the value of the float(dummy function)

tointeger()
converts the number to integer and returns it

tostring()
converts the number to string and returns it

tochar()
returns a string containing a single character rapresented by the integer part of the float.

weakref()
dummy function, returns the float itself.

Bool

tofloat()
returns 1.0 for true 0.0 for false

tointeger()
returns 1 for true 0 for false

tostring()
returns "true" for true "false" for false

weakref()
dummy function, returns the bool itself.

String

The language

39

len()
returns the string length

tointeger()
converts the string to integer and returns it

tofloat()
converts the string to float and returns it

tostring()
returns the string(dummy function)

slice(start,[end])
returns a section of the string as new string. Copies from start to the end (not included). If start is negat-
ive the index is calculated as length + start, if end is negative the index is calculated as length + start. If
end is omitted end is equal to the string length.

find(substr,[startidx])
search a sub string(substr) starting from the index startidx and returns the index of its first occurrence. If
startidx is omitted the search operation starts from the beginning of the string. The function returns null
if substr is not found.

tolower()
returns a lowercase copy of the string.

toupper()
returns a uppercase copy of the string.

weakref()
returns a weak reference to the object.

Table

len()
returns the number of slots contained in a table

rawget(key)
tries to get a value from the slot ‘key’ without employ delegation

rawset(key,val)
sets the slot ‘key’ with the value ‘val’ without employing delegation. If the slot do not exists , it will be
created.

rawdelete()
deletes the slot key without emplying delegetion and retunrs his value. if the slo does not exists returns
always null.

The language

40

rawin(key)
returns true if the slot ‘key’ exists. the function has the same eddect as the operator 'in' but does not em-
ploy delegation.

weakref()
returns a weak reference to the object.

tostring()
tries to invoke the _tostring metamethod, if failed. returns "(table : pointer)".

clear()
removes all the slot from the table

Array

len()
returns the length of the array

append(val)
appends the value ‘val’ at the end of the array

push(val)
appends the value ‘val’ at the end of the array

extend(array)
Extends the array by appending all the items in the given array.

pop()
removes a value from the back of the array and returns it.

top()
returns the value of the array with the higher index

insert(idx,val)
inserst the value ‘val’ at the position ‘idx’ in the array

remove(idx)
removes the value at the position ‘idx’ in the array

resize(size,[fill])
resizes the array, if the optional parameter fill is specified its value will be used to fill the new array's
slots(if the size specified is bigger than the previous size) . If the fill paramter is omitted null is
used instead.

sort([compare_func])

The language

41

sorts the array. a custom compare function can be optionally passed.The function prototype as to be the
following.

function custom_compare(a,b)
{

if(a>b) return 1
else if(a<b) return -1
return 0;

}

reverse()
reverse the elements of the array in place

slice(start,[end])
returns a section of the array as new array. Copies from start to the end (not included). If start is negative
the index is calculated as length + start, if end is negative the index is calculated as length + start. If end
is omitted end is equal to the array length.

weakref()
returns a weak reference to the object.

tostring()
returns the string "(array : pointer)".

clear()
removes all the items from the array

Function

call(_this,args…)
calls the function with the specified environment object(’this’) and parameters

pcall(_this,args…)
calls the function with the specified environment object(’this’) and parameters, this function will not in-
voke the error callback in case of failure(pcall stays for 'protected call')

acall(array_args)
calls the function with the specified environment object(’this’) and parameters. The function accepts an
array containing the parameters that will be passed to the called function.

pacall(array_args)
calls the function with the specified environment object(’this’) and parameters. The function accepts an
array containing the parameters that will be passed to the called function.This function will not invoke
the error callback in case of failure(pacall stays for 'protected array call')

weakref()
returns a weak reference to the object.

The language

42

tostring()
returns the string "(closure : pointer)".

tostring()
returns the string "(closure : pointer)".

bindenv(env)
clones the function(aka closure) and bind the enviroment object to it(table,class or instance). the this
parameter of the newly create function will always be set to env. Note that the created function holds a
weak reference to its environment object so cannot be used to control its lifetime.

Class

instance()
returns a new instance of the class. this function does not invoke the instance constructor. The construct-
or must be explicitly called(eg. class_inst.constructor(class_inst)).

getattributes(membername)
returns the attributes of the specified member. if the parameter member is null the function returns the
class level attributes.

getattributes(membername,attr)
sets the attribute of the specified member and returns the previous attribute value. if the parameter mem-
ber is null the function sets the class level attributes.

rawin(key)
returns true if the slot ‘key’ exists. the function has the same eddect as the operator 'in' but does not em-
ploy delegation.

weakref()
returns a weak reference to the object.

tostring()
returns the string "(class : pointer)".

Class Instance

getclass()
returns the class that created the instance.

rawin(key)
returns true if the slot ‘key’ exists. the function has the same eddect as the operator 'in' but does not em-
ploy delegation.

weakref()
returns a weak reference to the object.

The language

43

tostring()
tries to invoke the _tostring metamethod, if failed. returns "(insatnce : pointer)".

Generator

getstatus()
returns the status of the generator as string : “running”, ”dead” or ”suspended”.

weakref()
returns a weak reference to the object.

tostring()
returns the string "(generator : pointer)".

Thread

call(...)
starts the thread with the specified parameters

wakeup([wakeupval])
wakes up a suspended thread, accepts a optional parameter that will be used as return value for the func-
tion that suspended the thread(usually suspend())

getstatus()
returns the status of the thread ("idle","running","suspended")

weakref()
returns a weak reference to the object.

tostring()
returns the string "(thread : pointer)".

Weak Reference

ref()
returns the object that the weak reference is pointing at, null if the object that was point at was des-
troyed.

weakref()
returns a weak reference to the object.

tostring()
returns the string "(weakref : pointer)".

The language

44

	Table of Contents
	Chapter 1. The language
	Lexical structure
	Identifiers
	Keywords
	Operators
	Other tokens
	Literals
	Comments

	Values and Data types
	Integer
	Float
	String
	Null
	Bool
	Table
	Array
	Function
	Class
	Class instance
	Generator
	Userdata
	Thread
	Weak References

	Execution Context
	Variables

	Statements
	Block
	Control Flow Statements
	true and false
	if/else
	while
	do/while
	switch

	Loops
	for
	foreach

	break
	continue
	return
	yield
	Local variables declaration
	Function declaration
	Class declaration
	try/catch
	throw
	const
	enum
	expression statement

	Expressions
	Assignment(=) & new slot(<-)
	Operators
	?: Operator
	Arithmetic
	Relational
	Logical
	in operator
	instanceof operator
	typeof operator
	comma operator
	Bitwise Operators
	Operators precedence

	Table constructor
	delegate
	clone
	Array constructor

	Tables
	Construction
	Slot creation
	Slot deletion

	Arrays
	Functions
	Function declaration
	Default Paramaters
	Function with variable number of paramaters

	Function calls
	Binding an environment to a function
	Free variables
	Tail recursion

	Classes
	Class declaration
	Static variables
	Class attributes

	Class instances
	Inheritance
	Metamethods

	Generators
	Constants & Enumerations
	Constants
	Enumerations
	Implementation notes

	Threads
	Using threads

	Weak References
	Handling weak references explicitly

	Delegation
	Metamethods
	_set
	_get
	_newslot
	_delslot
	_add
	_sub
	_mul
	_div
	_modulo
	_unm
	_typeof
	_cmp
	_call
	_cloned
	_nexti
	_tostring
	_inherited
	_newmember

	Built-in functions
	Global symbols
	Default delegates
	Integer
	Float
	Bool
	String
	Table
	Array
	Function
	Class
	Class Instance
	Generator
	Thread
	Weak Reference

